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ABSTRACT

We describe an application for interactive visualization of 5 petabytes
of time-varying multivariate data from a high-resolution global ocean
circulation model. The input data are 10311 hourly (ocean time)
time steps of various 2D and 3D fields from a 22-billion point 1/48-
degree “lat-lon cap” configuration of the MIT General Circulation
Model (MITgcm). We map the global horizontal model domain
onto our 128-screen (8x16) tiled display wall to produce a canonical
tiling with approximately one MITgcm grid point per display pixel,
and using this tiling we encode the entire time series for multiple
native and computed scalar quantities at a collection of ocean depths.
We reduce disk bandwidth requirements by converting the model’s
floating point data to 16-bit fixed point values, and compressing
those values with a lossless video encoder, which together allow
synchronized playback at 24 time steps per second across all 128
displays. The application allows dynamic assignment of any two
encoded tiles to any display, and has multiple interfaces for quickly
specifying various orderly arrangements of tiles. All subsequent
rendering is done on the fly, with run time control of colormaps,
transfer functions, histogram equalization, and labeling. The two
data streams on each screen can be rendered independently and
combined in various ways, including blending, differencing, hori-
zontal/vertical wipes, and checkerboarding. The two data streams
on any screen can optionally be displayed as a scatterplot in their
joint attribute space. All scatterplots and map-view plots from the
same x/y location and depth are linked so they all show the current
brushable selection. Ocean scientists have used the system, and have
found previously unidentified features in the data.

Index Terms: J.2 [Physical Sciences and Engineering]: Earth and
atmospheric sciences; I.6.6 [Simulation and Modeling]: Simulation
Output Analysis; I.3.8 [Computer Graphics]: Applications

1 INTRODUCTION

This work was motivated by the completion of a very high resolution
global ocean simulation. The run covered 14 months of simulated
ocean time, with 242 million grid points at each of 90 ocean depths,
for a total of 22 billion grid points. Output was written at each
hour of simulated time, for a total of 10311 time steps, each with 20
variables (5 3D fields and 15 2D fields) — constituting five petabytes
of stored data. We first created movies showing the data, which we
could do at full resolution on our display wall, the hyperwall [33].
However, we wanted to create a tool that allows browsing, side-by-
side comparisons, and dynamic linked scatterplot brushing. In short,
our aim was to allow the researchers to interact with their data in
real time, not merely view it.

As a first step, the data were reformatted into multimedia files,
each file corresponding to one display screen on the hyperwall,
at one depth. The 32-bit floating point data were converted into
16-bit integers, and compressed using the FFV1 grayscale lossless
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multimedia codec [30]. Together, these operations reduced the data
size by a factor of four. The operations also formatted the data so
that playback only needs sequential file reads. This increases I/O
performance when reading the files from disk since it minimizes
seeks and allows prefetching.

A display program runs on each hyperwall node, and is capable
of decoding and displaying two of these multimedia files simulta-
neously. We are typically able to stream at 24 frames per second,
which is one simulated day per second. While the global view shown
in Figure 2 is popular, in fact any node is capable of decoding any
pair of files. This allows for the simple side by side comparison of
any two quantities. However, since the scalar data are rendered on
the fly, we are able to combine and compare the two data streams
on the same screen in interesting ways: split screen, checkerboard-
ing, blending, or subtracting. The color map for each movie can
be changed interactively allowing dynamically chosen ranges to be
highlighted. Histogram equalization can be done on a per-screen
basis to bring out the greatest possible detail.

Additionally, instead of displaying the two multimedia files as
portions of a global map, we can treat them simply as data values,
and display them as a scatterplot. When animating, the scatterplots
update with each new frame. Standard brushing techniques can be
used to either select a region on a display, and observe the associated
data values in the scatterplot, or select a set of data values on the
scatterplot, and observe the points overlaid on an associated map.

These capabilities provide a rich and powerful tool set for the
scientists to quickly home in on interesting features of the data, and
to look for previously unseen correlations between various quantities,
depths, and areas of the globe.

The remainder of the paper is structured as follows. We first
describe some related work, and then describe the simulation that
motivated this work. The following sections describe the application
in detail, and then explain how it was implemented. The paper
concludes with a short evaluation section, conclusions, and future
work.

2 RELATED WORK

There is a significant body of work in related subjects: tiled displays;
ocean visualization, and the similar atmospheric visualization; im-
age compression; scatterplots; and high-dimensional visualization.
Chupa et al. [15] describe a system that has several similarities to
this paper: it uses compressed images on a tiled display to perform
visualization of high-resolution ocean simulation data. This paper
extends that earlier work with interactive colormaps, comparison
features, and scatterplots. Another system using a tiled display for
atmospheric visualization was described by Zudilova-Sienstra et
al. [39], and included a user study. Tiled displays have also been
used for visualizing high-resolution image collections [38].

Related work in the general area of visualization for ocean simu-
lation output includes the paper by Butkiewicz and Ware [13], which
describes a flow visualization system that runs on a tablet. The
system by Köthur et al. [24] uses clustering to compare the output of
different ocean models. Samsel et al. explore interactive colormap-
ping [32] to see multiple data ranges in ocean salinity; our system
also uses interactive colormapping so the entire range of salinity and
other variables can be seen. Other ocean simulation visualization
was described by Shen [34], who wrote about a system for visual-
izing a regional ocean model, and by Woodring [37], who focused





Figure 2: The hyperwall showing a global view of temperature using a heated-object color map.

The ocean scientists originally analyzed the data set by extracting
small portions of the domain and transferring the extracted data
to their location. They then used conventional visualization and
analysis techniques to look at those data. These techniques made
it impossible to get a high-resolution overview of the data set, and
took much longer than doing the analysis with the new application.

4 APPLICATION FEATURES

We currently convert 13 of the 15 2D fields and 23 of the 90 depths
for each of the 5 3D fields into multimedia files, breaking the domain
at a given depth into screen-sized tiles. Since the aspect ratios of the
simulation domain and the hyperwall are different (the hyperwall
is wider), we replicate part of the domain to make the aspect ratios
match, and also remove the bottom 11% as it falls on the Antarctic
continent. While replicating the domain increases the overall tile
storage, the replication adds the important advantage that all of
the ocean basins are contiguous. After removing the bottom, the
remaining images are taller than the hyperwall, so we scale the
images by 93%. After scaling the images, we cut them into 128
1728 x 1328 tiles. These tiles are larger than the 1600 x 1200 screen
resolution because we include the pixels that are hidden by the
display bezels. An option allows either displaying the center 1600 x
1200 of the images, to get a pleasing global view, or scaling the tiles
down to fit the screen so all the data are visible. We don’t currently
support showing the Arctic area, as it is separate from the main
domain, but doing so would be straightforward.

Displays showing a map view cover the land areas with satellite
imagery, and the bare ocean floor areas with bathymetry. This
imagery is not stored in the encoded multimedia files, but in separate
overlay image files, one for each geographic location. Each file
contains both the satellite and bathymetry imagery. A bit mask
image for each geographic location and depth indicates whether the
colormapped data or the overlay image should be displayed.

4.1 Layout Controls

We have found that different analysis tasks need different layouts of
tiles on the screen. Layouts are selected in large list selection boxes
as shown in Figure 3(a). Most of the layouts are created with a short
script, while others are created using an editor to create an input file
to a utility. Creating a new layout is a quick process as only a single
input file needs to be created; the multimedia files do not need to
be changed. Every entry in a layout file contains the file name for
the tile to be shown as well as whether that tile should be shown

in a map or scatterplot view. We use file names to specify the tile
because it gives complete flexibility in creating layouts. The layout
creation script currently creates hundreds of layouts, which can be
categorized as follows:

• A global view, with a layout for each scalar and depth (Fig-
ure 2).

• A view showing depths horizontally, where one column from
the global view is replicated horizontally but with a different
depth in each column; created for each scalar and column
(Figure 1).

• A view showing depths vertically, similar to the above but with
one row replicated instead one column replicated (Figure 4).

• A view with everything for one geographic location: all thir-
teen 2D scalars and all five 3D scalars at all 23 depths.

• An easier to use view of the above: all thirteen 2D scalars and
all five 3D scalars at 16 depths, with each 3D scalar filling one
row of displays (Figure 5).

• A view of the east or west half of the global view, with columns
alternating between map and scatterplot views; a layout is
produced for each scalar and depth.

Two additional layout controls are sliders: one that rotates the
layout up and down, and a second that rotates the layout left and
right. This makes it easier to see the top row of the layout, or to see
the far right of the layout from the console located near the left edge
of the screen array.

4.2 Interactive Layout Specification

A separate interface can be used to interactively specify layouts
beyond the preconfigured list of layouts. The interface has been
previously published as an interface for exploring families of param-
eterized simulations [33]. The interface treats the set of tiles as a
4D hypercube, with the four dimensions being the row (of the tile
within the global view), column, scalar, and depth. The interface
lets the user specify which two dimensions should be mapped to the
rows and columns of the screens. The value to be used for two re-
maining dimensions are specified with a slider. This can be thought
of as slicing the hypercube with a plane, with the elements of the



(a) (b)

Figure 3: User interface. (a) The main user interface window; the configuration shown is the one used to produce Figure 6. (b) The main window
of the interactive layout interface; the settings shown were used to produce Figure 4.

Figure 4: The hyperwall showing the layout created in Figure 3(b). The scalar shown is salt concentration; the surface is shown on the bottom row,
and each higher row goes down three depth levels.

hypercube cut by the plane shown on the screens. The sliders control
the position of the plane within the hypercube. See Figure 3(b) for
an example.

A data dimension that is mapped to a display wall row or column
can be modified in two ways. First, some of the items in that dimen-
sion can be omitted by calling up a dialog box and only selecting the
wanted items. For example, if one of the mapped dimensions was
‘scalar values’, the tiles for salt and temperature could be omitted by
not checking them in the dialog box list. Second, a stride or offset
can be specified by using the second part of the interactive layout
interface (not shown). Figure 4 shows the depth variable mapped to
rows with a stride of 3.

4.3 Time Controls

The application has a simple set of time controls. There are the
standard play and stop buttons, plus a slider to give quick access
to any frame. The slider can respond to key presses, which will
move backwards or forwards a frame at a time. The animation
can be slowed down by entering a frames per second number in a
text box, or the animation can be sped up by having it skip frames,

which is controlled with a set of radio boxes. We have found that
both speeding up and slowing down the animation is important as
it makes it easier to pick out slow-moving or fast-moving features,
respectively. Finally, if there is a time range of interest then text
boxes can be used to set a first and last frame, and the application
will then play only those frames.

4.4 Interactive Color Map Editing

Using actual (albeit reduced precision) data values in the multimedia
files instead of RGB colors allows the color mapping to be changed
interactively; the 16-bit values give sufficient precision for a large
amount of contrast enhancement. Our color editor allows the colors
to be edited, as well as the minimum and maximum scalar values of
the color map. The editor allows opacity to be specified along with
each color, plus contours can be added. The application maintains
one color map for each scalar, which is initialized at start up from a
configuration file. A selection of preconfigured color maps, such as
grayscale, rainbow, heated object, etc., are available.

When editing a color map, the user selects the map to be edited us-
ing a menu. Changes made in a color map are immediately broadcast



Figure 5: The hyperwall showing most of the tiles for geographic location (the top and bottom rows of the hyperwall are black and have been
omitted). The tile shows the coast of Antarctica from approximately 125◦ to 155◦ West. The top row shows the 2D fields, while the remaining rows
show the 3D fields: horizontal speed, temperature, salinity, horizontal vorticity, and vertical velocity. Only 16 of the 23 depths are shown for the 3D
fields, with the depth increasing left to right. The tile shown is off the coast of Antarctica and shows circular plumes of cold brine falling due to
freezing at wide cracks in the sea ice (they show up faintly on the screens showing temperature and salinity in the middle of the rows).

Figure 6: Example of a side-by-side comparison showing theta (tem-
perature) and salt concentration at the ocean surface.

to all the nodes and the affected displays are updated. The minimum
and maximum color map values can be changed interactively by
dragging a line in the interface, which makes it fast to find values
that show the desired features.

The color maps can be optionally modified with histogram equal-
ization to increase the contrast of the displayed images and allow
fine details to be seen. The histogram equalization is done on a
per-screen and per-time-step basis. This ensures that every screen
shows the fine details, but it can distort the global view since the
color map is no longer consistent across the screens. When a color
scale is shown, we modify it to reflect the effect of the equalization
step, so the color scale shows the correct local color mapping.

4.5 Single-Screen Comparison

In addition to comparisons on adjacent screens, comparisons can be
on a single screen: the application can put two different tiles on a
single screen. The different tiles are chosen by selecting a layout
from the two large selection lists in Figure 3(a). The two tiles can
be displayed four different ways. They can be displayed by splitting
the screen, either horizontally or vertically, with the location of the
split controlled by a slider (see Figure 6). Or, they can be displayed

Figure 7: Example of an overlay comparison where the UV vorticity
(the curl of the horizontal velocity) is overlaid over theta (temperature).
In the regions where the UV vorticity values are low the temperature
values show through completely. The example shows the correlation
between regions of high temperature gradient and high vorticity.

in a checkerboard pattern; the slider here controls the size of the
squares. The two fields can be subtracted, and the result colored with
a color map; this technique is especially useful when two different
depths are subtracted. Finally, the two tiles can be blended, with the
alpha of one controlled using the color map. In this case, the slider
controls a separate alpha value that is multiplied with the map alpha
value to get the final value. We have found that using blending with
alpha works well when one tile is overlaid with the high values of
the other tile; see Figure 7 for an example.

4.6 Annotations

Each screen can be annotated; the annotations are selectively enabled
to reduce screen clutter. First, each of the two color maps used on the
screen can be shown. Showing the color map is important to allow
quantitative analysis. Second, the image row, column, scalar value,
and depth can optionally be shown. We have found this annotation
to be important as the flexibility in specifying tile layouts makes it
easy to get confused about what a given screen is showing. Third,



Figure 8: A portion of a custom layout showing a 4 by 5 array of scatterplots with some map view displays. All of the displays show data for the
same tile (geographical location), the eastern Atlantic ocean off North Africa. The selection box is on the screen in the second row, first column.

the current time can be displayed. Examples of these annotations
are shown in Figures 6 and 7. While the annotations are currently
sized so they can be seen from a distance, we plan to add an option
to decrease the annotation size to reduce screen clutter.

4.7 Scatterplots

Instead of showing the 16-bit scalars in map view, the application
can display them as scatterplots (see Figure 8). The scatterplot view
shows the point data along with a histogram for each scalar shown
at the edge of the screen.

With scatterplots, the user interacts with the hyperwall displays
instead of interacting with a user interface on the console. A separate
program uses the X11 XTest library to allow the mouse cursor to
move off the console and across the screens of the hyperwall, and to
forward key presses and mouse events to the remote display.

Selecting a scatterplot view is done either via the layout file, or
by a key press sent to a remote display. The scatterplot view can be
customized by zooming and panning using the mouse, which allows
a small region to be examined in detail.

All screens (ones in both the map and scatterplot view) respond
to rectangular selections made via the mouse. A selection is shared
between all the nodes displaying tiles from the same combination
of image row, image column, and depth. We call the set of nodes a
node group, in which we implement the well-known linked brushing
operation [9]. A node group can only have one selection; making a
new selection clears the old one. However, each different node group
can have a different selection. The linked brushing is implemented
by calculating a bitmap that indicates whether each point is in the
current selection, and then sharing the bitmap with all of the nodes
in the node group. Distributing the selection bitmap occurs fast
enough that there is no noticeable lag, although when animating the
selections may arrive one frame behind. Selections on the scatterplot

displays can either be evaluated at the time of the selection, with the
selected points held constant until another selection is made, or they
can be evaluated with every new time step.

5 IMPLEMENTATION

The application runs on our hyperwall, a display wall with 128
screens in 8 rows and 16 columns (see Figure 1). Each screen is
connected to a separate workstation-class system that has two 10-
core 2.8 GHz E5-2680v2 Intel Xeon processors, 64 GB of memory,
and a GeForce GTX 780 Ti GPU. The nodes are interconnected with
a FDR Infiniband network, and use the network to communicate
with a 30 GB/second (peak) Lustre file system. Each node also has
a 2 TB PCIe NVMe SSD. All the SSDs are aggregated together
with Excelero software to form a fast, low latency 250 TB file
system. Finally, a separate but similarly-configured system is used
as a console.

5.1 Architecture

The application runs on the console and hyperwall nodes. A script is
used to start all the processes and propagate the initial configuration.
The main process on the console runs the user interface, sends and
receives the messages used to synchronize screen updates, and runs
a (non-X11) event loop that determines the overall action of the
application. The process on each node has threads that decode the
multimedia file, draw new frames, and handle the scatterplot bitmask
communication.

When animating, the screen updates are synchronized using a
combination of a barrier and synchronized clocks. The decision to
draw a new frame starts when the all nodes have finished decoding
the new frame’s image. Each node sends a “ready” message to the
console, and when all of the messages have arrived, the console



determines and broadcasts a time in the near future when the nodes
should start displaying a new frame. That time is the later of 1) the
time for the next frame, assuming the application is in play mode,
and 2) a fixed time in the future (5 ms), which gives sufficient time
for the message to propagate and be handled. When a node receives
the message telling it the time for the new frame to be displayed, it
draws the frame into the back frame buffer, waits until the specified
time (if it has not already past), and then displays the frame (swaps
the front and back frame buffers).

The synchronization description in the previous paragraph implies
that the next frame is displayed only when all the nodes are ready,
but this is not necessarily true. Instead, we use a flexible barrier,
where nearly all the nodes (a configurable number) need to be ready
before proceeding, but with the proviso that a node can only be a
limited number of frames behind the others. This flexible barrier
minimizes the stuttering that occurs when the disk reads do not
complete in time, but does mean that some displays do not display
the current frame. We find that the flexible barrier improves the
overall user experience.

On the console, one thread in the process runs the user interface,
which is implemented using X11 and Motif. A second thread handles
the main application event loop, which handles events generated by
the user interface plus an event generated when all the nodes have
indicated that they are ready to draw the next frame. We use an
event loop to simplify the control code as it allows the asynchronous
incoming events to be serialized.

The console also has separate processes and windows for the
interactive layout interface. Layouts from each process are sent to
the main process over a pipe. We generally have two instances of
the interface running since two tiles per display can be decoded.

The hyperwall node portion of the application decodes the frames
and updates the display. The decoding is done up to 5 frames
in advance of the display update. Working ahead of the update
gives a buffer to isolate frame update from delays in reading data
from disk. The console portion of the application sends separate
command streams to the decoders and the display code to facilitate
the advance decoding. The advance decoding means that the display
code must usually discard decoded frames when performing seeking
or changing to a new tile. We use an OpenGL GLSL fragment shader
to draw frames: it performs the colormap look up, combines the
two images, does the histogram equalization when requested, and
overlays the land/bathymetry image.

The application uses ZeroMQ for the communication to share
scatterplot selections [3]. Scatterplot selections are sent to the con-
sole using Push-Pull ZeroMQ sockets. Selections are sent the ap-
propriate nodes (the ones with the correct image row, column, and
depth) using Publish-Subscribe sockets. Those sockets allow filters
to be established on the subscribe (receiving) end so that only the
desired messages are sent. Messages to clear the current selection
when a new one is made are also sent via the same ZeroMQ sockets.

5.2 Encoding

We use the FFV1 codec to compress the 16-bit input images [30]. We
chose it because it is one of very few that can losslessly encode 16-
bit data, and because it is available from the open source FFMPEG
project [5]. While we could store the raw FFV1 bitstream in a
file, we chose to use a NUT container [4] because it has a frame
index that allows for efficient seeks within the multimedia file, and
it is also supported by the FFMPEG libraries. We had to modify
the NUT code slightly for it to always emit a syncpoint startcode
before each frame, as some low-complexity image sequences that
compressed well did not have all of those startcodes, which are
needed for efficient seeking.

We did some investigation into compression techniques; the re-
sults are in Table 1. The table has separate values for wet cells
(cells containing water) because one could compress the data by

Table 1: Compression statistics. The “All cells” line gives the com-
pressed file sizes for several compression options as a percentage of
the original 16-bit data sizes. The “Wet cells” line gives the percent-
ages relative to the size of the 16-bit data without counting data for
the dry cells (cells that contain land).

FFV1 Codec

Reference PNG 16-bit 14-bit 12-bit 10-bit

All cells 36% 31% 23% 17% 11%

Wet cells 66% 57% 43% 31% 21%

Table 2: Per-field compression statistics given as a percentage of the
16-bit data sizes. See above for the definition of “Wet Cells” and “All
Cells”. Fields listed in bold are 3D.

Wet All Wet All

Field Cells Cells Field Cells Cells

Eta 26.5% 17.0% Salt 31.0% 16.2%

KPPhbl 47.3% 30.3% SIarea 7.88% 5.05%

oceFWflx 22.3% 14.3% SIheff 8.82% 5.65%

oceQnet 32.8% 21.0% SIhsalt 8.64% 5.54%

oceQsw 22.4% 14.4% SIhsnow 7.50% 4.81%

oceSflux 6.05% 3.88% Theta 39.6% 20.8%

oceTAUspeed 26.3% 16.9% UVspeed 69.2% 36.3%

oceTAUvort 51.2% 32.8% UVvort 82.2% 43.1%

PhiBot 51.5% 33.0% W 85.8% 45.0%

Overall 57.0% 30.6%

only saving the wet cell data, and consulting an index to decompress
those data to a regular grid at run time. The “wet cells” values give
compression ratios assuming that was done.

Overall, compressing 16-bit data resulted in cutting the size by a
factor of 3 (31% of the original size), or reducing the size to 57%
of the original size of the wet cells. Reducing the data precision by
scaling the data so that some number of the top bits were always
zero reduced the data size even further. This could be helpful if a
further reduction of size or bandwidth was necessary. We also tried
using the PNG compression algorithm instead of the FFV1 codec,
but the file sizes were larger.

The compression ratios varied significantly by field, as detailed
in Table 2. The W (vertical velocity) field was very complex, which
meant that the file sizes were 45% of the original file size, or 86%
of the size of the wet cells. On the other hand, the sea ice fields (the
ones that start with SI) compressed very well since most of the ocean
is free of ice. Those fields compressed to 5 to 6% of the original file
size, or 8 to 9% of the wet cell data size. Overall, the compressed
16-bit data occupies 237 TB.

Extracting the values from the original data files and encoding
them into multimedia files took several thousand node hours. The
run time was dominated by the time required to read the original
data from disk (over 1 PB).

Our research did not focus on compression. Other techniques are
likely to give higher compression rates with errors rates comparable
to the ones introduced by the 16-bit quantization. One possibility
is the lossy floating point array compression proposed by Lind-
strom [26]. However, the errors introduced by 16-bit quantization
have the desirable property that the errors are apparent, for example,
when a scatterplot is highly enlarged to show a very small detail.
Compression techniques that make use of the data’s temporal coher-
ence are especially promising, but would complicate seeking within
the multimedia files.

6 EVALUATION

We measured the performance of the application both when reading
from SSDs and when reading from our Lustre file system that has



Figure 9: Photo from the first visit of domain scientists.

spinning disks. The file systems were otherwise quiet during our
measurements. When the system is reading data off of SSDs it is
able to reliably show successive time steps at our desired 24 time
steps per second. We are able to maintain that frame rate when the
layouts show tiles that have the lowest compression, which requires
15 GB/s.

The 24 Hz frame rate is also maintained when the system is
reading data off of our Lustre file system’s disks, although not as
smoothly as with the SSDs. We found that the performance with
Lustre was sensitive to how the multimedia files were striped on the
Lustre Object Store Targets (OSTs), which are RAID disk arrays at
our facility. The striping needed to be done so that, for every layout,
the bandwidth required from each OST was not higher than could
be supported by it. We wrote a program that takes into account all
of the layouts and file sizes and calculates a near-optimal striping
configuration. The generated configuration requires bandwidth from
the OSTs that is only 10% higher than the theoretical optimum value.

After observing domain scientists work with the application, we
believe that its most important features are:

• A high resolution display which could show a complete global
view at once.

• Side-by-side and same-screen comparisons that let correlations
between fields to be found.

• Interactive controls allowing layouts to be quickly selected.

• Time controls that could speed up time to make slow-moving
features be apparent, and slow down time to let fast-moving
features be studied.

• Scatterplot brushing that enabled features to be identified.

A different and arguably more important way to evaluate the
system is user feedback. We have had several full work days with
domain scientists who uniformly found the application to be very
useful. Several of the scientists have come back for repeat visits,
which we feel is significant as all of our visitors have had to take the
trouble of traveling by air in order to visit. Once scientist [28] told
us that the application “has revolutionized the way that we are able
to utilize the model output and carry out scientific investigations. It
allows us to explore the solution for new (as opposed to predeter-
mined) physical phenomena. The viewer simultaneously allows us
to look at global phenomena as well as detailed processes.”

The scientists have found several features in the data that had
not been seen before. For example, one feature was cold brine

Figure 10: Compact eddies off the coast of Antarctica at 850 m depth
produced from sinking cold brine plumes. The orange is the ocean
bottom.

plumes rejected from freezing water at wide cracks in the sea ice,
which descended until reaching neutral buoyancy where they pro-
duce compact eddies due to cyclogeostrophic arrest (see Figure 10).
Investigating these features revealed overshooting and oscillations
around the neutrally buoyant level, as well as unexpected positive
and negative heat fluxes on opposite sides of the associated sea ice
cracks. The scientists were also able to investigate seasonality of the
surface and deep vorticity fields, and their interaction and modifica-
tion by internal waves, which is of much importance to the upcoming
Surface Water and Ocean Topography mission [2]. Finally, the sci-
entists have found issues with the simulation’s bathymetry data as
well as the temporal resolution of the wind data used to drive the
ocean surface.

7 CONCLUSIONS AND FUTURE WORK

We have presented the design of an application that effectively allows
interactive visualization and exploration of a 5 PB ocean simulation
data set. The application reformats the data so it can be presented
on the 245 million pixel hyperwall at near-native resolution at 24
time steps per second. It has numerous features for browsing, com-
parison and quantitative analysis. Domain scientists have found the
application to be a useful tool and have found several new features
in the data.

We have a long list of features that have been requested to be
added to the application. The features include an interactively-
specified vertical cut. Vertical cuts would require that all the layers
be decoded. Since we cannot decode all the layers for all the displays,
we plan to implement this by restricting the cut to a single tile, and
using multiple nodes to decode all of the layers for that tile, one
tile per node. Another requested feature is temporal filtering, which
would remove the diurnal cycle or tidal movements, and would let
the remaining features be seen more readily.
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