
James R. DeBonis
Glenn Research Center, Cleveland, Ohio

WRLES: Wave Resolving Large-Eddy Simulation Code, 
Theory and Usage

NASA/TM—2019-220192

May 2019



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientifi c and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

 

• CONTRACTOR REPORT. Scientifi c and 
technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658
 
• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

 



James R. DeBonis
Glenn Research Center, Cleveland, Ohio

WRLES: Wave Resolving Large-Eddy Simulation Code, 
Theory and Usage

NASA/TM—2019-220192

May 2019

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Acknowledgments

The author would like to thank Dr. Seth Spiegel and Dr. Dennis Yoder for their thorough reviews and helpful comments. The 
code described herein was developed over many years under several programs and projects within the National Aeronautics and 
Space Administration’s Aeronautics Research Mission Directorate. The development of this document was sponsored by the 
Transformative Aeronautics Concepts Program, Transformational Tools and Technologies Project.

Available from

Level of Review: This material has been technically reviewed by technical management. 

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

This work was sponsored by the 
Transformative Aeronautics Concepts Program.



NASA/TM—2019-220192 1

WRLES: Wave Resolving Large-Eddy Simulation Code, 
Theory and Usage 

 
James R. DeBonis 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract

A computational fluid dynamics code has been developed for large-eddy simulations (LES) of tur-
bulent flow. The code uses high-order of accuracy and high-resolution numerical methods to mini-
mize solution error and maximize the resolution of the turbulent structures. Spatial discretization
is performed using explicit central differencing. The central differencing schemes in the code include
2nd- to 12th-order standard central difference methods as well as 7-, 9-, 11- and 13-point dispersion
relation preserving schemes. Solution filtering and high-order shock capturing are included for sta-
bility. Time discretization is performed using multistage Runge-Kutta methods that are up to 4th
order accurate. Several options are available to model turbulence including: Baldwin-Lomax and
Spalart-Allmaras Reynolds-averaged Navier-Stokes turbulence models, and Smagorinsky, Dynamic
Smagorinsky and Vreman sub-grid scale models for LES. This report presents the theory behind
the numerical and physical models used in the code and provides a user’s manual to the operation
of the code.
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Nomenclature

aj finite difference coefficients
bj filter coefficients
c wave speed
e internal energy per unit mass
et total energy per unit mass
f arbitrary function
f force, f = m · l/t2
k thermal conductivity, or wavelength
l length
lT turbulent length scale for synthetic eddy method
lTx , lTy , lTz turbulent length scale in the x, y, and z directions for digital filtering

m mass
ṁ massflow rate
p pressure
qi heat flux vector
ri shock sensor parameter
t time
∆t computational time step
∆x,∆y,∆z grid spacing in coordinate directions
ui = [u, v, w]T velocity vector
xi = [x, y, z]T physical coordinate vector
C1, C2 constants in Sutherland’s law
Cp specific heat at constant pressure
Cv specific heat at constant volume
CFL Courant-Friedrichs-Lewy number
D damping function
E, F , G flux vectors
G(ξ) filter function
J Jacobian
M Mach number
N stencil half-width
Pr Prandtl number
Prt turbulent Prandtl number
Q vector of conservation variables
R specific gas constant
Re Reynolds number
Sij strain rate tensor
T temperature
δij Kronecker delta function
` turbulent length scale
η Kolmogorov length scale
γ ratio of specific heats
µ dynamic viscosity
ν kinematic viscosity
ρ density
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σ filter strength
τij stress tensor
ω wave number
ξi = [ξ, η, ζ]T computational coordinate vector
∆ filter width

superscripts
¯ averaged quantity
ˆ Reynolds averaged, or filtered quantity
˜ Favre filtered quantity
T turbulent (Reynolds-averaged Navier-Stokes)
sgs subgrid scale
sc shock capturing
∗ numerical
+ dimensionless quantity based on friction velocity
′ strong conservation form

subscripts
min minimum value
max maximum value
t derivative with respect to time, or turbulent quantity
x, y, z derivative with respect to spatial coordinate
v viscous
wall wall value
ξ, η, ζ derivative with respect to computational coordinate
0 stagnation/total condition
∞ freestream condition
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Introduction

Computational fluid dynamics (CFD) technology is pervasive throughout the aerospace industry
and is used in almost every facet of research and product development. Decades of research and
development in the areas of numerical methods, physical modeling, grid generation, and computer
science has produced the capability of solving highly complex flows in and about highly complex
geometries for a wide range of flow speeds. Chemical kinetics, heat transfer, multiphase flow, and
fluid-structure interactions are also routinely included in these calculations.

Most widely used production-type CFD codes solve the Reynolds-averaged Navier-Stokes (RANS)
equations using second-order accurate finite volume based numerical methods. The RANS equa-
tions are closed using a turbulence model. The Spalart-Allmaras model [1] and Menter’s shear stress
transport (SST) model [2] are the most widely used. RANS methods solve for a time-averaged so-
lution of the Navier-Stokes equations. The turbulence model provides the effect of the unsteady
turbulent fluctuations on the time-averaged flow. These codes perform very well in many circum-
stances. However, they uniformly fail to accurately predict separated flows, and free shear flows.
The limiting factor for these “standard” CFD codes is their reliance on the Reynolds-averaged
equations and turbulence models. Many attempts have been made to improve RANS turbulence
models with little success.

The most promising approach to improve CFD predictions of turbulent flows is to employ scale-
resolving simulations. Scale-resolving simulations do away with the Reynolds-averaged equations
and directly solve the time accurate equations for the turbulent motion. These simulations are
classified into direct numerical simulation (DNS) where all the turbulent scales are computed, and
large-eddy simulation (LES) where the large energy-containing scales are computed and the smaller
dissipative scales are modeled. The key to scale-resolving simulations is the accurate resolution of
the turbulent motion on the computational grid. Turbulent motion contains eddies comprised of
a wide range of scales/sizes, and the smallest scales require computational grids much finer than
those used in RANS calculations. The CFD codes developed for RANS computations are not well
suited for DNS and LES calculations. Their second-order accurate numerics require an inordinate
amount of grid points to resolve a turbulent eddy and contain a relatively significant dissipative
error, which destroys the turbulent motion we strive to capture.

This report describes a computational fluid dynamics code that was purpose-built for LES and
DNS calculations. The code employs high-order of accuracy finite-difference numerical methods
which can resolve fine-scale turbulent motion using less grid points than “standard” codes. The
code has been successfully applied to round jets [3–7], compressible mixing layers [8,9], the Taylor-
Green vortex [10], a supersonic boundary layer [11], cavity flow [12, 13], turbulent channel flow
(unpublished), and flow over a circular cylinder (unpublished). The numerical methods were chosen
to minimize dissipative error to preserve and accurately convect the turbulence through the domain.
The code can perform DNS, LES, RANS, and hybrid RANS/LES computations, and sub-grid
scale and turbulence models are available for LES and RANS calculations. This code uses block
structured computational grids with point-matched, overlapping boundaries. Part I of the report
describes the governing equations and numerical methods used in the code. Part II describes usage
of the code, including grid requirements, input parameters, boundary conditions, and recommended
practices.
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Part I

Theory

1 Governing Equations

The equations governing turbulent compressible fluid flows are presented below. The fluid is as-
sumed to be a continuum, which implies that the smallest scales of interest are much larger than
the scales of molecular motion.

1.1 The Navier-Stokes Equations

The most fundamental set of equations considered are the three-dimensional Navier-Stokes equa-
tions. As presented below, they express the conservation of mass, momentum, and energy for an
unsteady compressible fluid in tensor form using Cartesian coordinates (x,y,z).

The continuity equation expresses the conservation of mass.

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

The momentum equation expresses Newton’s second law. It relates the time rate of change of
momentum to the forces applied.

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + δijp) =

∂τij
∂xj

(2)

The stress tensor is defined as
τij = µ

(
2Sij − 2

3δijSkk
)

(3)

and the strain rate tensor is

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(4)

Sutherland’s law is used to model the viscosity

µ =
C1T

3
2

C2 + T
(5)

The constants, C1 and C2, are dependent on the gas being modeled.

Conservation of energy expresses the first law of thermodynamics. It relates the time rate of change
of energy to the amount of heat added and the work done.

∂

∂t
(ρet) +

∂

∂xi
(ρuiet + uip) =

∂

∂xi
(ujτij − qi) (6)
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The total energy of the fluid, et, is defined from the internal energy, e = cvT

et = e+ 1
2uiui (7)

The heat flux vector is represented by

qi = −k ∂T
∂xi

(8)

The system of equations is closed using the equation of state for a perfect gas.

p = ρRT (9)

1.2 Flux Vector Form

For CFD, it is helpful to recast the equations in flux vector form. This puts all of the equations in
the same form for easy discretization and solution.

The flux vector form of the three-dimensional Navier-Stokes equations is

∂Q

∂t
+

∂

∂x
(E − Ev) +

∂

∂y
(F − Fv) +

∂

∂z
(G−Gv) = 0 (10)

where

Q =


ρ
ρu
ρv
ρw
ρet



E =


ρu

ρu2 + p
ρuv
ρuw

(ρet + p)u

 Ev =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx



F =


ρv
ρvu

ρv2 + p
ρvw

(ρet + p) v

 Fv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz − qy



G =


ρw
ρwu
ρwv

ρw2 + p
(ρet + p)w

 Gv =


0
τzx
τzy
τzz

uτzx + vτzy + wτzz − qz



For inviscid simulations, the Euler equations are obtained by setting the viscous flux vectors, Ev,
Fv, and Gv to zero.

NASA/TM—2019-220192 12



1.3 Equations for Turbulent Simulations

1.3.1 Direct Numerical Simulation

Direct numerical simulation (DNS) is the solution of the Navier-Stokes equations in which all scales
of turbulent motion are captured in the simulation. This means that the equations are solved in a
time-accurate manner on a grid that contains enough grid points so that the numerical scheme can
resolve all scales of turbulent motion everywhere in the domain. The smallest scales of turbulence
were first estimated by Kolmogorov [14] and bear his name. The Kolmogorov scales are a strong
function of Reynolds number, η/`0 = Re−3/4. As Reynolds number becomes large, the range of
scales that must be simulated becomes very large. Consequently, the number of grid points for
a high Reynolds number simulation is prohibitive. Choi and Moin provide estimates for the grid
requirements of scale resolving simulations [15]. For the foreseeable future, DNS is limited to low
Reynolds number flows. Where this technique can be applied, excellent results are possible since
there are no additional assumptions or modeling necessary.

1.3.2 Reynolds-Averaged Navier-Stokes

In a Reynolds-averaged Navier-Stokes (RANS) analysis the equations of motion are averaged over
a long time period, τ . For a compressible flow a density weighted, Favre averaging, is used.

f̂ =
1

ρτ

∫ t+τ

t
ρfdt (11)

The resulting equations are

∂ρ

∂t
+

∂

∂xi
(ρûi) = 0 (12)

∂

∂t
(ρûi) +

∂

∂xj
(ρûiûj + δijp) =

∂

∂xj

(
τ ij + τT

ij

)
(13)

∂

∂t
(ρêt) +

∂

∂xi
(ρûiêt + ûip) =

∂

∂xi

[(
ûjτ ij + ûjτ

T
ij

)
− (qi + qTi )

]
(14)

p = ρRT̂ (15)

The unclosed terms from the RANS momentum and energy equations are the Reynolds stress, τT
ij ,

(eqn. 13) and the turbulent heat flux vector, qTi , (eqn. 14). In linear eddy viscosity models, the
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Boussinesq approximation is used to relate the turbulent Reynolds stress to the mean rate of strain
tensor through a turbulent (or eddy) viscosity, µt.

τT
ij = µt

(
2Ŝij − 2

3δijŜkk

)
(16)

The rate of strain tensor, Ŝij , is given by:

Ŝij =
1

2

(
∂ûj
∂xi

+
∂ûi
∂xj

)
(17)

Similarly, the turbulent heat flux is related to the temperature gradient through the turbulent
viscosity and the turbulent Prandtl number, Prt, is typically treated as a constant.

qTj = −µt
Cp
Prt

∂T̂

∂xj
(18)

In a RANS simulation, the affect of the turbulent motion on the averaged flow is accounted for by
the turbulent viscosity. The turbulent viscosity is computed in the turbulence model based on the
local averaged flow quantities. There are numerous turbulence models in the literature of varying
sophistication, each with its own advantages and drawbacks. The resulting averaged flowfield is
generally assumed to be the time-mean flowfield. In these instances, the solution is converged to a
steady state. However, since the time period over which the equations are averaged is ambiguous,
this does not have to be the case. Unsteady simulations can be run, but the separation between the
unsteady motion captured by the Navier-Stokes equations and the turbulent motion captured by
the turbulence model should be clear. Unsteady RANS (URANS) can be used successfully where
there is a large-scale unsteadiness in the mean flow that is of a much lower frequency than the
random turbulent motion. If this separation of scales is not distinct, the validity of the solution
will be questionable.

Baldwin-Lomax Model The Baldwin-Lomax model [16] is a simple algebraic mixing-length
model designed for wall bounded flows (boundary layers). Its inclusion in this code is intended
for modeling regions of small-scale turbulence where LES is not amenable. It is not intended for
accurate turbulent simulations (advanced turbulence models in production-type RANS codes are
more appropriate). Some examples include: the flow upstream of a cavity, nozzle boundary layers
and attached flow over an airfoil.

The model computes eddy viscosity for two layers: one near the wall - the inner layer and one away
from the wall - the outer layer.

µt =

{
(µt)inner , y ≤ ycrossover
(µt)outer , y > ycrossover

(19)
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Here, the y-coordinate is assumed to be normal to the wall. The crossover point, ycrossover, is the
normal distance from the wall at which the two values for µt are equal. The inner layer is computed
from

(µt)inner = ρ`2|ω| (20)

where
` = κy

[
1− e(−y+/A+)

]
(21)

where y+ is the nondimensional distance from the wall, based on the law of the wall, and |ω| is the
magnitude of the vorticity vector. This outer layer is computed from

(µt)outer = ραCCPFwakeFKleb(y) (22)

where
Fwake = min

(
ymaxFmax, CwakeymaxU

2
dif/Fmax

)
(23)

and F is a function based on the normal distance from the wall and the vorticity magnitude

F (y) = y|ω|
[
1− e(−y+/A+)

]
(24)

The Klebanoff intermittency factor is

FKleb(y) =

[
1 + 5.5

(
CKleby

ymax

)6
]−1

(25)

Fmax is the maximum value of F , and ymax is location where the maximum value of F is achieved.
Udif is the difference between the maximum and minimum velocity in the boundary layer profile.
The coefficients are κ = 0.40, A+ = 26, α = 0.0168, CCP = 1.6, CKleb = 0.3, and Cwake = 1.0.

Spalart-Allmaras Model The Spalart-Allmaras (SA) model [1] is a very popular one-equation
turbulence model that provides good results for a wide range of applications. The SA model solves a
transport equation for the turbulent viscosity. Several variants of the standard SA model have been
developed. The Negative SA model allows for negative values of the SA variable ν̃ and allows stable
solutions on under-resolved grids and during transients; desirable features in high-order simulations.
A conservative formulation of the Negative SA model, based on reference [17] is implemented here.

The turbulent viscosity transport equation is given by

∂

∂t
(ρν̃)+

∂

∂xj
(ρuj ν̃)−ρ (P −D)− 1

σ

∂

∂xj

[
ρ(ν + ν̃fn)

∂ν̃

∂xj

]
− cb2
σ
ρ
∂ν̃

∂xk

∂ν̃

∂xk
+

1

σ
(ν+ ν̃fn)

∂ρ

∂xk

∂ν̃

∂xk
= 0

(26)
where ν = µ/ρ. For the negative version of the model, the following terms are dependent on the
sign of the turbulent viscosity
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P =

{
cb1 (1− ct3)Sν̃ if µt < 0

cb1 (1− ft2) S̃ν̃ if µt ≥ 0
(27) D =

{
−cw1

[
ν̃
d

]2
if µt < 0(

cw1fw − cb1
κ2
ft2
) (

ν̃
d

)2
if µt ≥ 0

(28)

fn =

{
cn1+χ3

cn1−χ3 if µt < 0

1 if µt ≥ 0
(29) µt = max (0, ρν̃fv1) (30)

The remaining terms are

cw1 =
cb1
κ2

+
1 + cb2
σ

(31) χ =
ν̃

ν
(32)

ft2 = ct3e
(−ct4χ2) (33) fv1 =

χ3

χ3 + c3
v1

(34)

fv2 = 1− χ

1 + χfv1
(35) S = |ω̄| (36)

|S̃| = S +
ν̃

κ2d2
fv2 (37) g = r + cw2

(
r6 − r

)
(38)

r = min

(
ν̃

S̃κ2d2
, rlim

)
(39) fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

(40)

The variable d represents the minimum distance to the wall. The constants are σ = 2
3 , ct3 = 1.2,

ct4 = 0.5, κ = 0.41, cb1 = 0.1355, rlim = 10.0, cw2 = 0.3, cw3 = 2.0, cb2 = 0.622, cv1 = 7.1, and
cn1 = 16.0. The SA model equation is treated as a sixth equation in the Navier-Stokes set and
solved with the others in the same manner.

1.3.3 Large-Eddy Simulation

The basis of large-eddy simulation (LES) is the separation of the large- and small-scale turbulent
fluctuations. The large-scale turbulence is computed directly using the Navier-Stokes equations.
The small scale turbulence is modeled. Since the large scales carry the vast majority of the turbulent
kinetic energy, the technique offers promise for accurate turbulent simulations. The small-scale
turbulence serves to dissipate the large scales and is isotropic. This fact implies that a simple
model can be constructed to impose the effect of the small scales on the rest of the flow.

To separate the large (resolved) and small (unresolved) scales, the equations are filtered. A spatial
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filter G with a filter width ∆ is used.

f̄ =

∫ ∞
−∞

G(x− ξ)f(ξ)dξ (41)

The overbar represents the resolved, filtered, or large-scale portion of the function. Commonly used
filter functions are a box filter, a Gaussian filter, or a spectral cutoff filter [18]. Typically, it is not
necessary to know the exact form of the filter function G, but only that it exists. In practice, the
solution is not explicitly filtered. It is assumed that the numerically computed solution is a filtered
representation of the exact solution.

Several constraints are imposed on the filter function.

1) G(−ξ) = G(ξ)

2)

∫ ∞
−∞

G(ξ)dξ = 1

3) G(ξ)→ 0 as |ξ| → ∞
4) G(ξ) is small outside

(
−∆

2 ,
∆
2

)
These constraints are necessary to insure that the filter function will commute with the derivative.

∂f

∂x
=
∂f̄

∂x
(42)

Favre (density) weighting is used in the filtering process. This allows for convenient recovery of
terms corresponding to the unfiltered equations.

f̃ =
ρf

ρ̄
(43)

The filtering process is applied to the continuity, momentum, and energy equations. The resulting
equations are comprised of resolved and unresolved terms. The resolved terms in the filtered
equations directly correspond, in form, to the unfiltered equations.

The resulting LES expressions for conservation of mass, momentum, and energy are:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (44)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj + δijp) =

∂

∂xj

(
τ ij + τ sgs

ij

)
(45)

∂

∂t
(ρẽt) +

∂

∂xi
(ρũiẽt + ũip) =

∂

∂xi

[(
ũjτ ij + ũjτ

sgs

ij

)
− (qi + qsgsi )

]
(46)

p = ρRT̃ (47)
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As with the turbulent Reynolds stress in the RANS momentum equation, the sub-grid scale stress
is related to the rate of strain tensor by a turbulent viscosity that will be determined by a model.

τ sgs

ij = µt

(
2S̃ij − 2

3δijS̃kk

)
(48)

The rate of strain tensor, S̃ij , is given by:

S̃ij =
1

2

(
∂ũj
∂xi

+
∂ũi
∂xj

)
(49)

Similarly, the turbulent heat flux vector is related to the temperature gradient through the turbulent
viscosity and the turbulent Prandtl number, Prt, typically treated as a constant.

qsgsj = −µt
Cp
Prt

∂T̃

∂xj
(50)

The unclosed terms from the LES momentum and energy equations are the sub-grid scale stress,
τ sgs

ij , (eqn. 45) and the sub-grid scale heat flux vector, qsgs, (eqn. 46). In a traditional LES approach,
a sub-grid model would be used to compute τ sgs

ij and qsgs, analogous to a RANS turbulence model.
However, many practitioners forego sub-grid modeling, relying on the dissipation implicit in the
numerical scheme to dissipate the energy at the small scales. This approach is sometimes called
Implicit LES (ILES).

In LES, the fact that the small-scale turbulence is not resolved significantly reduces the number of
grid points required for a simulation. But, it is important to note that the grid requirements for
LES are still high, and increasing the grid resolution reduces the reliance on the sub-grid modeling
and its associated errors and assumptions.

Smagorinsky Model The Smagorinsky sub-grid model [19] is included in the code. It is a
simple but very popular and widely used model for the sub-grid scale stress tensor. It is an eddy
viscosity model where the sub-grid scale stress tensor is modeled as an eddy viscosity multiplying
the resolved strain-rate tensor.

µt = ρ̄C∆2|S̃| (51)

The magnitude of the the strain rate tensor is given by |S̃| =
√

2SijSij and the coefficient C is a
user defined constant with a default value of 0.01.

The filter width ∆ is chosen to be a characteristic length of the computational grid. Since the grid
is not uniform, this length varies widely over the grid. The filter width at each location is defined
as the cubed root of the volume associated with each grid point.

To maintain a laminar sub-layer in wall bounded regions, the effect of the sub-grid model must be
diminished near the wall. To accomplish this, a Van Driest damping function [20] is used to scale
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the effect of the sub-grid terms,

fV D =
[
1− e(−y+/A+)

]
(52)

where y+ is the inner variable distance, and the constant A+ is set to 26.

Dynamic Smagorinsky Model The coefficient in the Smagorinsky model is set a priori and
is used uniformly throughout the domain. Dynamic sub-grid scale models remove this limitation
by automatically computing the coefficient based on the local flow conditions. The dynamic model
assumes the relationship between the resolved field and the sub-grid field is the same as the relation-
ship between the resolved field at a larger test-filter width and the resolved field at the grid-filter
width. The test-filter width is typically twice the grid-filter width. The stress-strain relationship
at the larger scale is compared to the grid scale to determine the coefficient’s value. A compressible
version of Lilly’s dynamic model [21] is implemented here. The stress tensor representing the flow’s
scales between the test-filter width and grid-filter width is

Lij = −̂̄ρũiũj +
1

ˆ̄ρ

(̂̄ρũî̄ρũj) (53)

Where (̂ ) is the test filter and ũi is the grid-filtered velocity. We define

Mij = 2∆̂2 ˆ̄ρ| ˆ̃S| ˆ̃Sij − 2∆2 ¯̂ρ|S̃|S̃ij (54)

where S̃ is the grid filtered traceless strain rate tensor. The coefficient is obtained from

C =
1

2

(
LijMij

MijMij

)
(55)

The sub-grid turbulent viscosity is then computed as in the Smagorinsky model (eqn. 51). The
dynamic procedure can produce negative values of the coefficient, which cause instability in the
solution. This is normally managed by averaging the value of C in a homogeneous flow-direction
(i.e. spanwise in a boundary layer or shear layer), or by limiting the coefficient to positive values.
By default, WRLES performs averaging in the ζ-/k-direction. Averaging in a different direction,
or limiting requires a relatively easy modification of the source code.

The additional filtering procedures used make the dynamic model computationally expensive. To
minimize the expense, the dynamic Smagorinsky model is only called on the first Runge-Kutta
stage of a time step, and the resulting turbulent viscosity is used for all of the stages in the time
step.

Vreman Model Vreman [22] developed a simple algebraic model that addresses some of the
perceived deficiencies of the Smagorinsky model. Vreman’s model is less dissipative than the
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Smagorinsky model and the turbulent viscosity automatically vanishes near the wall and in tran-
sitional regions without the ad hoc use of the Van Driest damping function. The model is given
by

µt = ρ̄Cvr

√
Bβ

αijαij
(56)

where

αij =
∂ũj
∂xi

βij = ∆2αmiαmj

and

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23

The coefficient in Vreman’s model is related to the Smagorinsky constant, Cvr ≈ 2.5C.

2 Numerical Method

The governing equations presented above are solved numerically using finite-difference-based nu-
merical methods. These numerical schemes will be presented in terms of a one-dimensional model
equation for simplicity

∂q

∂t
+
∂f

∂x
= 0 (57)

where f = f (q).

2.1 Spatial Discretization

The spatial derivatives are computed using one of several finite difference stencils. For the Navier-
Stokes equations, these stencils act on the flux vectors and are represented by the D operator in
equation 69. Both standard nth-order central differences and several dispersion relation preserving
stencils are implemented . Central differencing of the flux terms was chosen for this code because
of its non-diffusive properties. Standard central difference schemes are typically written as follows.
The second-order stencil is

∂f

∂x

∣∣∣∣
i

=
fi+1 − fi−1

2(∆x)
(58)

The fourth-order stencil is

∂f

∂x

∣∣∣∣
i

=
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12(∆x)
(59)
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The size of the differencing stencil is increased to increase the order of accuracy. The central
difference stencil can be written for an arbitrary stencil half-width, N, as

∂f

∂x

∣∣∣∣
i

=
N∑
j=1

1

∆x
[aj(fi+j − fi−j)] (60)

This code is written to accommodate stencils up to N = 6. The total number of points in the
central difference stencil is 2N + 1.

2.1.1 Standard Stencils

Standard central difference stencils are designed to minimize the truncation error for a given stencil
size. The order of the truncation error is related to the width of the stencil, O

[
(∆x)2N

]
. WRLES

supports central difference stencils from 2nd- to 12th-order. This formal order of accuracy is the
traditional measure of a numerical scheme. An alternative way to examine the error in a numerical
scheme is Fourier analysis. For DNS and LES analyses, accurate resolution and convection of
the turbulent structures is critical. We can use Fourier analysis to examine the resolution and
convection of waves using central differencing [23]. As mentioned previously, central difference
schemes do not produce dissipation error. However, they do produce dispersion errors that affect
the speed of traveling waves. For central difference schemes, the error in the phase speed can be
expressed as a function of the normalized angular wave number (k∆x), where k is the wave number
and ∆x is the grid spacing.

c∗

c
=

2

k∆x

N∑
j=1

ajsin [j (k∆x)] (61)

The normalized angular wave number can be used as a measure of the resolution of a wave. The
number of points resolving one wavelength is 2π

k∆x . When k∆x is small, the resolution is high, and
vice versa.

The results of equation 61 for the standard central difference schemes are plotted in figure 1. For all
schemes, the error in wave speed increases with decreasing resolution, with the lower-order schemes
only behaving accurately for very low values of k∆x. This plot clearly indicates that 2nd-order
schemes are a very poor choice for LES and accurate resolution of turbulent structures requires
very fine grids or high-order methods.

2.1.2 Dispersion Relation Preserving Stencils

Tam & Webb [24] and Tam & Shenn [25] originated a new family of schemes referred to as dispersion
relation preserving (DRP) schemes. In these schemes, some of the coefficients in the stencil are
optimized to reduce the dispersion error of the scheme rather than the truncation error. The
original DRP scheme used a 7-point stencil. Bogey and Bailly developed a family of DRP schemes
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4th Order
6th Order
8th Order
10th Order
12th Order

Figure 1: Standard central difference schemes’ preservation of wave speed

that use 9-, 11-, and 13- point stencils [26]. All of these schemes are formally fourth-order accurate.
Five points are required for a fourth-order accurate scheme. The additional points in the stencils
are used to improve the dispersion characteristics of the schemes and the range of wave numbers
where phase error is low increases with the stencil size. The wave speed preserving abilities of DRP
schemes is compared to the standard schemes in figure 2. Schemes using the same number of points

k x

c*
/c

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

6th Order
8th Order
10th Order
12th Order
T&S 7pt
B&B 9pt
B&B 11pt
B&B 13pt

Figure 2: Comparison of standard and dispersion relation preserving schemes’ preservation of wave
speed

in the stencil are represented by the same color; solid lines indicate standard schemes and dashed
lines indicate DRP schemes. It is clear from this plot that the DRP schemes provide accurate
convection speeds for a wider range of wave resolutions than the standard schemes for the same
amount of computational work. The coefficients for the central-difference schemes implemented in
WRLES and used in equation 60 are given in table 1
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2.2 Filtering and Artificial Dissipation

The central differencing stencils used for the spatial discretization introduce a dispersive error into
the solution. This error manifests itself in two ways. First, waves that are not resolved with enough
grid points have their speeds altered. This error can be minimized by using the dispersion relation
preserving stencils. Second, new high wave number waves are introduced into the solution. If
unchecked, these errors can grow and cause the analysis to become unstable and eventually fail. In
addition, when finite difference stencils encounter a discontinuity in the solution, such as a shock
wave, they produce unphysical oscillations (ringing) and overshoots near the sharp discontinuity.
This is know as the Gibbs phenomenon. Artificial dissipation, added to the solution, damps the
unwanted waves and maintains a stable computation.

2.2.1 Solution Filtering

The high wave number waves introduced by the dispersive error destabilize the solution. To ensure
a stable solution without adversely affecting the resolving properties of the scheme, solution filtering
is used. This is a low-pass filter that leaves the low-wavenumber well-resolved structures untouched
and removes the high-wavenumber unresolved structures that cause instability. The filter adds
dissipation and care must be taken to insure that it does not adversely affect the solution. The
filter must be properly matched to the differencing scheme, so that the filter removes only those
waves that are not accurately computed. In WRLES, a coefficient multiplying the filter has been
added. By selecting 0 ≤ σ ≤ 1, the dissipation can be further minimized. As shown in equation
62, the filter is implemented similarly to the finite differencing scheme and is applied sequentially
in each computational direction to each field of solution variables at every iteration.

f̂i = fi + σ

N∑
j=−N

bjfi+j (62)

The damping of the filter as a function of normalized wave number is given by

D (k∆x) = b0 + σ

2

N∑
j=1

bjcos (jk∆x)

 (63)

Kennedy and Carpenter [27] developed a set of solution filters from 2nd- to 12th-order. These are
implemented in WRLES and are intended to be used with the standard central difference schemes.
In practice, a filter two orders higher than the differencing scheme can be used (e.g. a 4th-order
central difference scheme and a 6th-order filter). Bogey & Bailly [26] and Tam & Shen [25] created
filters to match the resolving properties of their DRP stencils, and they are also included. Figure
3 shows the filter damping functions for the standard and DRP based filters.

Table 2 lists all the available filters and their coefficients.
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Figure 3: Damping function of the solution filters

2.2.2 Shock Capturing

For weak shock waves, the dissipation from the filter may be enough to minimize the Gibbs phe-
nomenon appearing around shock waves. For stronger shocks, additional artificial dissipation can
be added to reduce the oscillations. The method used here was developed by Bogey, de Cacqueray,
and Bailly [28] and is adapted from Jameson’s classic method [29]. It uses a shock sensor function
to identify the points in the domain where the shock wave is located and then applies an adaptive
second-order filter around the discontinuity.

The shock-filtered variable is

f sc
i = fi −

(
σsc
i+ 1

2

Dsc
i+ 1

2

− σsc
i− 1

2

Dsc
i− 1

2

)
(64)

where the damping functions are computed as

Dsc
i+ 1

2

=
n∑

j=1−n
cjfi+j Dsc

i− 1
2

=
n∑

j=1−n
cjfi−j

where n = 2, c1−j = −cj and, c1 = −0.210383 and c2 = 0.039617.

The filtering strength, 0 ≤ σsc
i± 1

2

≤ 1, varies within the flowfield and is a maximum near shocks and

a minimum away from them. It is based on a pressure gradient parameter that senses the location
of shock waves
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dpi =
−pi+1 + 2pi − pi−1

4
(65)

The magnitude of dpi is computed as

|dpi| =
1

2

[
(dpi − dpi+1)2 + (dpi − dpi−1)2

]
(66)

and the shock sensor parameter is

ri =
|dpi|
p2
i

+ ε (67)

where ε is a small number. The filter strength is computed based on ri and a user defined threshold
value, rth, that sets the sensitivity of the sensor.

σsci =
1

2

(
1− rth

ri
+

∣∣∣∣1− rth
ri

∣∣∣∣) (68)

and

σsc
i+ 1

2

=
(
σsci+1 + σsci

)
σsc
i− 1

2

=
(
σsci + σsci−1

)

2.3 Time Discretization

Runge-Kutta schemes are a popular family of time-advancement schemes that offer high-order
temporal accuracy. The multi-stage framework of Runge-Kutta allows a great deal of flexibility.
The number of stages and the associated coefficients can be varied to adjust the order of accuracy,
stability, and error properties. The number of stages in the scheme must be equal to or greater than
the desired order of accuracy. Several researchers [30–33] have developed alternative Runge-Kutta
schemes that have a lower dispersion error than the standard scheme leading to greater stability
and accuracy. To accomplish this, additional stages are required, which provide a means to impose
the additional constraints necessary to minimize the error. Berland, Bogey and Bailly [34], and
Allampalli, Hixon, Nallasamy and Sawyer [35] developed schemes that are stable at higher CFL
numbers.

All of the schemes in WRLES are based on a general M-stage 2-N storage (2 solution vectors are
stored) formulation given by

dfm = αmdfm−1 + ∆tD (fm−1) (69a)
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fm = fm−1 + βmdfm (69b)

for m = 1 . . .M , and where f0 = fn represents the solution at the current time step (t) and
fM = fn+1 represents the solution at the new time step (t + ∆t). The coefficient α1 is typically
set to zero for the algorithm to be self-starting; a solution at the previous time step t −∆t is not
required. The operator D is the spatial finite difference operator as described in section 2.1.

Eleven different schemes are implemented in the code, ranging from first- to fourth-order accuracy
and from one to seven Runge-Kutta stages. Table 3 lists the schemes, order of accuracy and number
of stages. The coefficients for the schemes, αm and βm, are given in table 4.

Table 3: Low-dispersion Runge-Kutta schemes implemented in the code

Scheme Number of Stages Order of Accuracy

Euler forward EF 1-1 1 1
Second order SO 2-2 2 2
Williamson [36] WN 3-3 3 3
Gottlieb & Shu, TVD [32] GS 3-3 3 3
Carpenter & Kennedy [30] CK 4-3 4 3
Carpenter & Kennedy [30] CK 5-4 5 4
Stanescu & Habashi [33] SH 5-4 5 4
Stanescu & Habashi [33] SH 6-4 6 4
Berland et al [34] BBB 6-4 6 4
Allampalli et al [35] HALE-RK 6-4 6 4
Allampalli et al [35] HALE-RK 7-4 7 4

For time accurate simulations, a global time step size, ∆t, is used. The time step is either computed
based on a CFL number or is specified directly by the user. The time step based on CFL is
computed using

∆t = CFL ·∆tCFL (70)

where the characteristic time based on the inviscid CFL condition [37] is given by

∆tCFL =

(
|u|
∆x

+
|v|
∆y

+
|w|
∆z

+ a

√
1

∆x2
+

1

∆y2
+

1

∆z2

)−1

(71)

If the CFL number is specified, ∆t is computed at every grid point and the minimum value in the
domain is used to advance the solution.

Local time stepping is available for steady state analyses or to quickly advance the solution from
initial conditions. In this technique, the CFL number is specified and ∆t is computed and stored
at each grid point. This local time step is used to advance the solution at different rates at each
point. To improve stability on poor quality grids, WRLES filters the time step with a second-order
Kennedy & Carpenter filter. This ensures that the time step varies smoothly between neighboring
points, minimizing oscillations in the solution.
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2.4 Generalized Curvilinear Coordinates

To enable flow solutions for a wide range of geometries the Navier-Stokes equations are solved
using generalized curvilinear coordinates [38]. This enables the computational grids to be fitted to
complex shapes and allows for grid stretching.

2.4.1 Coordinate Transformation

Easy and efficient implementation of the numerical scheme is done by working in a computational
domain. This domain is rectangular and consists of equally spaced grid points. The computational
domain (ξ, η, ζ) is mapped from the physical domain (x, y, z) using the following transformation

ξ = ξ(x, y, z)

η = η(x, y, z)

ζ = ζ(x, y, z) (72)

Derivatives in cartesian coordinates are computed using the chain rule

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ
(73)

The terms ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, and ζz are the grid metrics associated with the transformation.
The grid metrics are computed numerically using the following method.

ξx = J(yηzζ − yζzη)
ξy = J(xζzη − xηzζ)
ξz = J(xηyζ − xζyη)
ηx = J(yζzξ − yξzζ)
ηy = J(xξzζ − xζzξ)
ηz = J(xζyξ − xξyζ)
ζx = J(yξzη − yηzξ)
ζy = J(xηzξ − xξzη)
ζz = J(xξyη − xηyξ) (74)

The Jacobian of the transformation, J , is defined as

J =
1

xξ(yηzζ − yζzη)− xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)
(75)

The terms xξ, xη, xζ , yξ, yη, yζ , zξ, zη, and zζ represent differentiation of the physical coordinate
with respect to the computational coordinate (subscript) and are computed using the same finite
difference formula as specified for the solution of the equations. The calculation is easily done in
computational space because the grid is evenly spaced in the ξ, η, and ζ directions.
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2.4.2 Strong Conservation Form of the Governing Equations

Most CFD solvers working in generalized curvilinear coordinates solve the strong conservation law
form of the Navier-Stokes equations developed by Vinokur [39].

∂Q′

∂t
+

∂

∂ξ
(E′ − E′v) +

∂

∂η
(F ′ − F ′v) +

∂

∂ζ
(G′ −G′v) = 0 (76)

where

Q′ =
Q

J

E′ =
1

J
(ξxE + ξyF + ξzG) E′v =

1

J
(ξxEv + ξyFv + ξzGv)

F ′ =
1

J
(ηxE + ηyF + ηzG) F ′v =

1

J
(ηxEv + ηyFv + ηzGv)

G′ =
1

J
(ζxE + ζyF + ζzG) G′v =

1

J
(ζxEv + ζyFv + ζzGv)

2.4.3 Chain Rule Form of the Governing Equations

Alternatively, the chain rule form of the governing equations can also be used

∂Q

∂t
+ ξx

∂

∂ξ
(E − Ev) + ηx

∂

∂η
(E − Ev) + ζx

∂

∂ζ
(E − Ev)

+ ξy
∂

∂ξ
(F − Fv) + ηy

∂

∂η
(F − Fv) + ζy

∂

∂ζ
(F − Fv)

+ ξz
∂

∂ξ
(G−Gv) + ηz

∂

∂η
(G−Gv) + ζz

∂

∂ζ
(G−Gv) = 0

(77)

This form of the equations is a weak conservation form. Hixon, Shih, Dong, and Mankbadi [40]
showed that in practice, the chain rule form of the equations is more accurate than the strong
conservation form when the metric terms are computed numerically. Both forms of the equations
are available in the code.
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Part II

Usage

1 Overview

The WRLES code operates in a manner similar to most other CFD codes. The main inputs to the
code are the grid, previous solution (if applicable), and an input file specifying both code options
and boundary conditions. It is typically run in batch mode on a highly parallelized computing
platform. The code’s main output is a new solution file. Most simulations performed with WRLES
are time accurate simulations so the new solution is an instantaneous one. The code has the ability
to time average any quantity that can be computed from the instantaneous solution and this result
can also be output.

The code was originally written in Fortran 77 and subsequently ported to Fortran 90. A mix of
both standards can be seen in the code. New routines are written using modern Fortran. Fortran 90
dynamic memory allocation is used throughout. Users should expect to perform at least some code
modification; specifying time-averaged variables and other custom output options, at a minimum.
Care has been taken to make sure the source code is easy to read and easily changed.

The following sections provide the necessary information to set up and run the code. Simple
examples are provided.

1.1 Requirements

WRLES is routinely run on basic multi-core Linux workstations, Macintosh computers, and NASA’s
Pleiades multi-node, multi-core massively parallel supercomputer. There are only two require-
ments for running WRLES: a Fortran compiler and the Message Passing Interface (MPI) libraries.
OpenMP capability in the Fortran compiler is desirable for multi-core machines, but is not required.
The MPI libraries are required even when running on a single compute node. WRLES employs a
minimum of 2 MPI processes.

1.2 Setting Parameters

A Fortran module, parameters.f, contains parameter statements that are necessary for compiling
the code. These parameters control the precision of real variables (single or double), the size of
the buffers used in MPI communication, and the size of the arrays used for time averaging and
post-processing.

Double precision is recommended and set as the default, but single precision can be selected by
commenting out the double precision parameters and uncommenting the single precision parame-
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ters.

The buffer sizes should not be changed unless the code is modified and additional variables must
be passed in MPI communication. The size of the buffers is determined by the number of integers
and real numbers contained in the buffer. When adding or subtracting variables in the buffer(s),
one should simply modify the number of integers or reals in the parameter statement(s).

The final two parameters will most likely be modified for every new case that is computed. These
parameters set the number of variables that are being time averaged, and the number of vari-
ables being post-processed. All time-averaged and post-processed variables are assumed to be real
numbers. The user must modify the time averaging, tavew.f, and post processing, postw.f, sub-
routines for their needs and then set the parameters nvartav and nvarpost to ensure that they
are sized correctly.

1.3 Compiling

The source code is distributed as a tar file comprised of individual subroutines. WRLES is compiled
using a makefile which is included in the distribution. Prior to compiling the code, the user must set,
in this makefile, the compiler name, compiler options, and loader options specific to their system.
Two examples that work with common system configurations are below. Users are encouraged to
experiment with the compiler options on their system to optimize the computational speed.

Many MPI installations use the mpif90 command to automatically compile the Fortran code and
link in the MPI libraries. For these systems the following example should be used.

FC=mpif90

FFLAGS=-O2 -openmp

LDFLAGS=-openmp

The -openmp option allows parallel processing at the do loop level, within an MPI process. The
-O2 sets the compiler optimization level.

For systems without the mpif90 command, the Fortran compiler must be specified (ifort in this
example), and the MPI libraries must be linked in with the loader flag -lmpi.

FC=ifort

FFLAGS=-O2 -openmp

LDFLAGS=-openmp -lmpi

Compilation is performed by issuing the command make. The command make clean will remove the
old executable and object files. A tar file can be generated with the command make tar. A single
source code file can be generated with the command make cat. Note that the files parameters.f,
data.f and dataturbin.f affect the data structures throughout the code. Modifying one of these
files forces a recompilation of all of the subroutines.
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1.4 Units

The code solves a dimensional form of the equations. Hence, a consistent set of units must be
used. The quantities in the input file must match the units of the grid file. The default system is
the British Imperial System (BIS); slugs, feet, degrees Rankine, and seconds. The metric system
(SI system) can be selected through the input file; kilograms, meters, degrees Kelvin, and seconds.
Table 5 shows the two standard systems of units. Alternatively, the individual constants necessary
to define the measurement system may be specified in the input file. Section 3 will have further
details on specifying the inputs. The constants affected by a change in units are the specific gas
constant and the constants for Sutherland’s law to compute the kinematic vicosity.

Table 5: Units for the BIS and SI systems

Quantity BIS SI

mass, m slugs kg
length, l ft m
temperature, T R K
time, t s s
force, f lbs N
pressure, p psf (lb/ft2) Pa (N/m2)

2 Files

WRLES employs numerous files in the process of running a simulation. There are two files that
are always required by the code: the computational grid and the input file. These files are inputs
to the code and must be generated externally. The other files contain data computed within the
code and are output. In many cases, these files can be read back in, to restart the solution process
from the previous code execution.

The input file, which is a text file, selects the equation set to be solved, the numerical methods
used, and the boundary conditions for the simulation. The input file will be discussed in section 3.

The grid and solution data use the NASA PLOT3D standard. The format of the PLOT3D based
files being input and output is determined by the input variables ifin and ifout respectively. A
value of 1 is a formatted (ASCII) file. A value of 2 is a Fortran unformatted file. The precision
of the files is determined by the setting in the source file parameters.f. The default is double
precision.

Table 6 lists the Fortran unit numbers for the various files input and output by WRLES.
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Table 6: File unit numbers and formats

Unit Number
File Input Output Format

input 1 ASCII text file
output stdout ASCII text file
grid 10 20 PLOT3D grid
solution 11 21 PLOT3D solution
turbulent variables, algebraic models 12 22 PLOT3D function
turbulent variables, Spalart-Allmaras model 13 23 PLOT3D function (2 variables)
time-averaged file 15 25 PLOT3D function (nvartav variables)
turbulent inflow boundary data 100 + nb* ASCII data file (see section 4.1.2)
grid metrics and Jacobian 27 PLOT3D function (10 variables)
grid cell size 28 PLOT3D function (3 variables)
post-processed data 31 PLOT3D function (nvarpost variables)

*nb = grid block number

Figure 4: Stencil half widths, N , at overlapping block boundary

2.1 Computational Grids

WRLES uses three-dimensional blocked structured grids. The grids are specified using the NASA
PLOT3D file format with the three-dimensional and multi-block options [41]. The code requires
that the interface between grid blocks must be point matched and overlapping. In other words,
the grid blocks will share a number of common grid planes. The number of overlapping grid planes
depends on the largest stencil size, finite-difference or filter, used in the calculation. The number
of shared grid planes is 2N , where N is the stencil half width. This is one less than the total
stencil size. This requirement ensures that every grid point in the domain is computed using a
full central difference and filter stencil. For example, if the 13-point DRP scheme and matching
filter is selected, the stencil half-width is N = 6 and the interfacing grid blocks must share 12 (2N)
common planes. If a 4th-order central difference (N = 2) is used in conjunction with a 6th-order
filter (N = 3 points in the stencil), then the grid blocks must share 6 grid planes. This overlapping
requirement preserves the order of accuracy of the scheme at grid interfaces without impacting
computational efficiency. A schematic showing the overlap requirement and the resulting stencil
half widths at each point for a 13-point stencil is given in figure 4.

High-order schemes are very sensitive to grid quality. Care should be taken to maximize grid
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smoothness and minimize grid stretching. Bogey and Bailly recommend stretching rates no more
than 2- or 3-percent [26] for their optimized schemes. Abrupt changes in curvature should be
avoided, and curved meshes must be adequately resolved to avoid anomalies in the grid metrics. In
other words the grid resolution must be such that the grid metrics can be accurately represented
by a polynomial of the order of the numerical scheme. This is particularly important when there
is curvature near boundaries.

A large-eddy simulation’s success hinges on the resolution of the turbulent structures in the flow.
These structures must be well resolved in all three-dimensions. In addition to the need for many
more grid points compared to a RANS simulation, there are grid topology matters that must be
addressed. Grid topologies that are successful in Reynolds-averaged Navier-Stokes computations
are often poor choices for LES. RANS grids often have high cell aspect ratios, with much finer
resolution in the wall normal direction than the streamwise direction. LES grids require much finer
resolution in the streamwise and spanwise directions.

WRLES performs parallel processing at the grid-block level. Each block is processed by a separate
MPI process, usually on a separate CPU. The grid must be split into blocks prior to running
WRLES. For efficient computations, all blocks should contain a similar number of grid points, so
that each processor performs the same amount of work. If the work is not balanced across the
processors, some processes must wait for the larger grid blocks to finish, resulting in inefficiencies.
Splitting grid blocks can be done when generating the grid. Alternatively, a stand-alone program
was developed to split the grid in an efficient manner and generate the appropriate input file.
Details of this procedure are in section 6.

The grid file must be in PLOT3D file format: three-dimensional, multi-block, Fortran unformatted
(default) [41]. The grid must be dimensioned in units that match those specified in the input file
(the default is feet), and it must be in a right-handed coordinate system. It is read on Fortran unit
10. A sample Fortran code that writes the proper grid format is below.

write(20) nblk

write(20) (imax(n),jmax(n),kmax(n),n=1,nblk)

do n = 1,nblk

write(20) (((x(i,j,k,n),i=1,imax(n)),j=1,jmax(n)),k=1,kmax(n)),

& (((y(i,j,k,n),i=1,imax(n)),j=1,jmax(n)),k=1,kmax(n)),

& (((z(i,j,k,n),i=1,imax(n)),j=1,jmax(n)),k=1,kmax(n))

end do

The variables are described in table 7. WRLES writes out an iblanked grid file on unit 20. This file
contains an iblank array as a fourth variable. The iblank array is an integer array which contains
ones and zeros; ones for active points and zeros for those points which are set as holes in the input
file. The iblanked file is not necessary for WRLES, but can be useful for plotting.

2.2 Flow Solution

The flowfield used by WRLES is an instantaneous solution if global time stepping is used, and a
quasi-steady solution if local time-stepping is used. The file is in PLOT3D solution file format:
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Table 7: Variables in PLOT3D grid, solution, and function files

Variable Description Type Dimension

nblk number of grid blocks integer 1
imax(n) maximum i-index for block n integer nblk

jmax(n) maximum j-index for block n integer nblk

kmax(n) maximum k-index for block n integer nblk

fsmach freestream Mach Number real 1
alpha angle of attack real 1
re Reynolds number real 1
time time real 1
timeave0 total time of averaging real 1
x(i,j,k) x-coordinate real imax(n) x jmax(n) x kmax(n)

y(i,j,k) y-coordinate real imax(n) x jmax(n) x kmax(n)

z(i,j,k) z-coordinate real imax(n) x jmax(n) x kmax(n)

q(i,j,k,l) solution vector real imax(n) x jmax(n) x kmax(n) x 5

func(i,j,k,l) function real imax(n) x jmax(n) x kmax(n) x nvar(n)

qavg(i,j,k,l) time-averaged variable real imax(n) x jmax(n) x kmax(n) x nvartav(n)

three-dimensional, multi-block, Fortran unformatted (default) [41]. If starting a new computation,
the user can set the variable iinit = 1 in the input file. No solution file will be read and the
solution will be initialized to the freestream values specified in the input file. If starting from a
previous solution, this solution is read on Fortran unit 11. The final solution is written on unit 21.
A sample Fortran code that reads the solution file is below.

read(11) nblk

read(11) (imax(n),jmax(n),kmax(n),n=1,nblk)

do n = 1,nblk

read(11) fsmach,alpha,re,time

read(11) (((q(i,j,k,l,n),i=1,imax(n)),j=1,jmax(n)),

& k=1,kmax(n)),l=1,5)

end do

Note that fsmach, alpha and re are specified by the PLOT3D standard but are not used in the
WRLES code. These variables can be set to any value, but it is recommended that they be set for
their intended purpose, freestream Mach number, angle of attack and Reynolds number, in order
to avoid any confusion. The time variable represents the elapsed time in the simulation. If global
time stepping is being used, the value for time will be zero. The solution variables are dimensional
and the units must match those specified in the input file. Table 8 shows the solution file variables
with the generic units: mass (m), length (l), and time (t).

2.3 Function Files

Other files may be used by the code depending on the options selected. Most of these files use the
PLOT3D function file format [41].
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Table 8: Dimensional units for solution variables

variable quantity dimensions

Q1 ρ m/l3

Q2 ρu m/(l2 · t)
Q3 ρv m/(l2 · t)
Q4 ρw m/(l2 · t)
Q5 ρet m/(l · t2)

read(unit) nblk

read(unit) (imax(n),jmax(n),kmax(n),nvar(n),n=1,nblk)

do n = 1,nblk

read(unit) (((func(i,j,k,l,n),i=1,imax(n)),j=1,jmax(n)),

& k=1,kmax(n)),l=1,nvar(n))

end do

2.3.1 Algebraic Turbulence data

If an algebraic turbulence model or sub-grid scale model is used, the code will produce a function
file which contains the turbulent viscosity, µt. Strictly speaking, this file is not necessary at startup,
as the turbulent viscosity is recomputed before it is used in solving the Navier-Stokes equations.
However, WRLES attempts to read the file at startup in case of situations where it will be needed
such as a post-processing only run.. If the file is not there, the code will continue after writing a
warning message. This file is read on unit 12, and written on unit 22.

2.3.2 Spalart-Allmaras Turbulence data

When the Spalart-Allmaras turbulence model is selected, the code will read and write two variables
to a function file: the variable solved in the SA equation, ρν̃, and the resulting turbulent viscosity,
µt. If the SA model is selected, but the data file does not exist, the turbulence will be initialized
to the freestream value. This file is read on unit 13 and written on unit 23.

2.3.3 Time-Averaged Data

If time averaging is activated, the code will output a file containing the time-averaged variables.
The file is a slightly modified version of a PLOT3D function file. The only difference from the
standard format, shown above, is the addition of a real variable on the first line, which holds the
amount of time accumulated in the averaging process.
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read(15) nblk,timeave0

read(15) (imax(n),jmax(n),kmax(n),nvartav(n),n=1,nblk)

do n = 1,maxblk

read(15) (((qavg(i,j,k,l,n),i=1,imax(n)),j=1,jmax(n)),

& k=1,kmax(n)),l=1,nvartav(n))

end do

Most programs will ignore this additional variable and read the file as a standard PLOT3D function
file. The file is read on Fortran unit 15 and written on unit 25. The number of variables, nvartav
and the specific variables that are output are specified by the user in the source files parameters.f
and tavew.f, respectively. See section 5.1 for more details.

2.3.4 Grid Metrics

It is sometimes useful to view the grid metrics (section 2.4.1) in order to ascertain grid quality and
to debug new code. Whereas most grid generation software has this feature built-in, the metrics
are typically computed with second-order numerics. WRLES can output the metrics and Jacobian
computed with the scheme currently chosen for the computation. The high-order results can be
quite different for highly curved or stretched grids. The variables ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz,
and J are written on unit 27 when the variable imet is set to 1 in the namelist.

2.3.5 Grid Cell Size

The internally computed cell length in each coordinate direction, ∆x, ∆y, and ∆z, can be output
on unit 28 by setting the variable ics to 1 in the namelist.

2.3.6 Post-Processed Data

The post-processing routines can be modified to the user’s needs, and the information here only
applies to the routines that come with the standard distribution of WRLES. When post processing
is activated, a PLOT3D function file with 5 variables will be written on Fortran unit 31. The file
contains the x, y, and z components of vorticity, dilatation, and the magnitude of the strain rate
tensor.

3 Code Options

The inputs necessary for running the code are divided into two sections. The first section is for
the inputs to select the various options available in the code. These options are divided into three
categories: the numerical scheme, physical models, and input/output. The second section specifies
the boundary conditions, unused grid regions (holes), and the exit zones.
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The inputs in the first section select how the solver is run and what type of simulation is run.
They also determine what type of processing is performed on the data and how it is output. These
options are specified through a Fortran namelist. The code has default values for all the options.
Any variable specified in the namelist overrides the default value. When the code initializes it
writes out the values of all code inputs to ensure the user is aware of the options that are selected.
The reader can refer to the theory portion of this document, section I, for details on how the input
parameters and might affect the results.

The first line of the input file contains the start of the namelist,“&inputs”. The various options
are specified on subsequent lines and the end of the namelist is signaled with a “/”. The variables,
their possible values and their descriptions are found in tables 9, 10, and 11, for the numerical
scheme, physical models, and input/output, respectively. Note that the default Fortran convention
for integer (variables beginning with letters i through n) and real variables (all other variables)
is used. In general, each integer variable has a predefined list of values that can be specified.
Choosing an undefined value of an integer variable will lead to unpredictable code behavior. Real
variables are generally physical constants or model coefficients and can take on any value. However,
straying too far from the default or physically acceptable value may also lead to unpredictable code
behavior.

The structure of the namelist is

$inputs

ninter = 10

acfl = 1.0

isch = 43

iorder = 13

idmp = 123

sigma = 0.5

ivisc = 1

iturb = 1

/

The variables in the namelist are described in the following sections.

3.1 Numerical Scheme Inputs

niter, integer: The number of iterations to be run. Make sure that the amount of CPU time is
sufficient to complete this number of iterations. Otherwise, the job will terminate without writing
the output.

acfl, real: Controls the time step. A positive number indicates that the value represents the CFL
number. A negative number indicates that the absolute value of the number represents the physical
time step, ∆t. Because this is an explicit code, stable values for the CFL number are typically less
than one. Although, values around 1.5 have been achieved with Berland’s scheme. In practice, if
local time stepping is selected, the CFL number must be reduced even further. When choosing
a physical time step, it is recommended to first run with a stable CFL number and use the code
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output to determine a reasonable ∆t.

ltstep, integer (0 or 1): Selects global or local time stepping. The CFL number is used to compute
a time step at every grid point. For ltstep = 0, global time stepping is used; the minimum value
of the time step in the domain is used to advance the solution everywhere. For ltstep = 1 local
time stepping is used; the time step at each grid point is used to advance the solution at that
point. Local time stepping has proven to be less stable. The local time step is filtered to avoid
large disparities at adjacent points.

isch, integer: Runge-Kutta scheme. This variable selects the particular Runge-Kutta scheme to
be used for time advancement. See table 9 for available schemes.

iorder, integer: Selects the spatial differencing scheme. Even values 2 through 12 select the
standard central difference stencils of the given order. Odd values greater than 100 select a DRP
scheme where the total number of points in the differencing stencil is 2N + 1 = iorder− 100. See
table 9 for available schemes.

iconsv, integer (0 or 1): Selects the form of the Navier-Stokes equations. A value of 0 selects
the chain-rule form. A value of 1 selects the strong conservation form. The strong conservation
form runs faster and is recommended for all calculations unless differencing across the centerline
in a cylindrical grid is used. For the strong conservation form, the scaling of the solution vector,
Q, by the Jacobian is done within the Runge-Kutta loop. Outside of the Runge-Kutta loop, in
portions of the code where the user interacts with the data, the solution vector is not scaled by
the Jacobian. This includes subroutines responsible for time-averaging, post-processing, boundary
conditions, and output.

idmp, integer: Selects the filtering/damping scheme. Even values 2 through 10 select Kennedy and
Carpenter’s filters of the given order. Values 31 and 32 select Tam and Shenn’s [25] DRP filters.
Odd values greater than 100 select a Bogey and Bailly DRP filter where the total number of points
in the filter stencil is 2N + 1 = iorder− 100. See table 9 for details.

ndmp, integer: The frequency of filtering/damping. A positive number filters the solution every
ndmp iterations. A negative number filters the solution every |ndmp| Runge-Kutta steps. Filtering
the solution once every iteration is typically the best practice. However, ndmp can be chosen to
vary the amount of numerical dissipation in the solution.

sigma, real: The coefficient, σ multiplying the filtering function (equation 62). The value should
be 0 ≤ σ ≤ 1. This variable allows additional control of the amount of numerical dissipation in the
solution.

ishcap, integer (0 or 1): A value of 1 activates the shock capturing dissipation scheme.

scrth, real: The threshold parameter in the shock capturing scheme (equation 68). This parameter
determines where the additional dissipation is applied. Smaller values increase the shock sensor’s
sensitivity, increasing dissipation; larger values decrease it, reducing dissipation.

iinit, integer (0 or 1): Solution initialization. A value of 1 initializes the solution at startup to
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the freestream Mach number, pressure and temperature specified in the input file. When restarting
from a previous solution iinit, should be set to zero.

3.2 Physical Modeling Inputs

ivisc, integer (0 or 1): Viscous terms. A value of one includes the viscous terms in the Navier-
Stokes equations. Setting ivisc = 0 creates an inviscid solution.

iturb, integer: Turbulence/sub-grid model selector. This variable activates the various RANS
turbulence models and LES sub-grid scale models. See table 10 for the various options. A value of
zero indicates that no model is active. When no model is active, the type of solution produced will
be highly dependent on the resolution of the grid and can vary from laminar flow to a turbulent
simulation using implicit LES, to a turbulent flow using direct numerical solution.

csmg, real: Smagorinsky/Vreman model coefficient. The coefficient determining the strength of the
Smagorinsky sub-grid scale model (see equation 51). This coefficient is also used to set the strength
of the Vreman model. The Vreman model coefficient is 2.5 times the value set here.

prt, real: Turbulent Prandtl number. This variable is used to relate the turbulent heat flux to the
turbulent momentum transfer in RANS and LES sub-grid scale modeling. The value is dependent
on the type of flow. See [42] for typical values.

ibled, integer: Baldwin-Lomax model boundary layer edge parameter. Limits how far from the
wall the Baldwin-Lomax turbulence model will search for the boundary layer edge. This helps avoid
spurious results when multiple walls or significant vorticity outside the boundary layer are present
in the domain. This variable is expressed in the maximum number of grid points away from the
wall to search for the boundary layer edge.

iblpk, integer: Baldwin-Lomax model peak selection. Determines which peak (1st, 2nd, etc.) in
the F function (equation 24) to select as the boundary layer edge. Spurious peaks in the F function
are known to occur very near the wall. Setting iblpk to n will ignore the first n− 1 peaks. Note
that typical values for iblpk are 2 or 3.

fsmach, real: Freestream Mach number. The freestream Mach number is used in several places
throughout the code: code initialization, boundary conditions, etc. When a distinct freestream is
not present in the flow, this value should be set to a Mach number representative of the bulk flow.

aoa, real: Angle of Attack. This variable specifies the angle of the flow relative to the x-axis in
the x-y plane. The variable is used in the following boundary conditions: characteristic freestream,
subsonic inflow, and supersonic inflow.

pinf, real: Freestream pressure. The freestream pressure is used in several places throughout the
code: code initialization, boundary conditions, etc. When a distinct freestream is not present in
the flow, this value should be set to a pressure representative of the bulk flow.
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Table 9: Inputs for the numerical scheme (default values in italics)

Variable Definition Value(s) Description
niter number of iterations 1

acfl time step control 1.0 for acfl > 0, CFL number
for acfl < 0, ∆t = |acfl|, time step (s)

ltstep local time stepping 0 off
1 on

isch Runge-Kutta temporal scheme 11 Euler forward
22 2nd-order Runge-Kutta
33 Williamson’s 3-3 scheme
332 Gottlieb & Shu’s TVD scheme
43 Carpenter & Kennedy’s 4-3 scheme
54 Carpenter & Kennedy’s 5-4 scheme
542 Stanescu & Habashi’s 5-4 scheme
64 Stanescu & Habashi’s 6-4 scheme
1064 Allampalli’s HALE-RK 6-4 scheme
1074 Allampalli’s HALE-RK 7-4 scheme
2064 Berland’s 6-4 scheme

iorder spatial scheme 2 2nd-order central difference
4 4th-order central difference
6 6th-order central difference
8 8th-order central difference
10 10th-order central difference
12 12th-order central differnece
107 Tam & Shenn’s 7-point DRP scheme
109 Bogey & Bailley’s 9-point DRP scheme
111 Bogey & Bailley’s 11-point DRP scheme
113 Bogey & Bailley’s 13-point DRP scheme

iconsv conservation form 0 chain-rule form
1 strong conservation form

idmp order of filter 2 Kennedy & Carpenter’s 2nd-order filter
4 Kennedy & Carpenter’s 4th-order filter
6 Kennedy & Carpenter’s 6th-order filter
8 Kennedy & Carpenter’s 8th-order filter
10 Kennedy & Carpenter’s 10th-order filter
12 Kennedy & Carpenter’s 12th-order filter
31 Tam & Shenn’s DRP filter (σ = 0.3π)
32 Tam & Shenn’s DRP filter (σ = 0.2π)
109 Bogey & Bailley’s 9-point DRP filter
111 Bogey & Bailley’s 11-point DRP filter
113 Bogey & Bailley’s 13-point DRP filter

ndmp frequency of filter (iterations or Runge-Kutta stages) 1 for ndmp > 0, every ndmp iterations
for ndmp < 0, every |ndmp| Runge-Kutta stages

sigma filter coefficient 0.25 0 ≤ σ ≤ 1.0

ishcap shock capturing 0 off
1 on

scrth shock threshold 1.0E-05 Threshold for shock capturing detection

iinit initial solution 0 read in initial solution
1 initialize to freestream values
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tinf, real: Freestream temperature. The freestream temperature is used in several places through-
out the code: code initialization, boundary conditions, etc. When a distinct freestream is not
present in the flow, this value should be set to a temperature representative of the bulk flow.

gam, real: Ratio of specific heats. This sets the variable γ =
cp
cv

.

iunits, integer (1 or 2): Sets the system of units used in the simulation. A value of 1 selects
British Imperial units: feet, slugs, degrees Rankine. A value of 2 selects the metric system: meters,
kilograms, degrees Kelvin.

rgas, real: Specific gas constant.

csuth1, real: First Sutherland’s law constant. A coefficient in Sutherland’s law which determines
the viscosity as a function of temperature. See equation 5.

csuth2, real: Second Sutherland’s law constant. A coefficient in Sutherland’s law which determines
the viscosity as a function of temperature. See equation 5.

pr, real: Prandtl number.

plfac, real: Pressure limiter factor. The code has the capability to force a lower bound on the
static pressure to aid in stability during the initial transients of a solution. By setting plfac to
a non zero value, the code will force the pressure to not go below plfac · p∞. This is done by
recomputing the density to satisfy the Navier-Stokes equations. The value of plfac should be
between 0 and 1, and it should be set low enough that pressure limiting is only activated during
initial transients.

ittlim, integer (0 or 1): Total temperature limiting. It has been found that for flows with very
large temperature gradients, the total temperature in small regions of the domain can sometimes
grow unchecked as a form of an instability. By setting itlim = 1 the total temperature in the
solution will be limited to the value specified by ttlim. The density is adjusted to satisfy the
Navier-Stokes equations.

ttlim, real: Total temperature limit. The maximum total temperature allowable in the solution.
When used, set the value to at least 110 percent of the expected value. See ittlim above for more
information.

3.3 Input/Output Inputs

ifin, integer: Grid and solution input file format. A value of 1 indicates that the grid and
solution files to be read in are formatted Plot3D files. A value of 2 indicates that they are Fortran
unformatted Plot3D files.

ifout, integer: Grid and solution output file format. A value of 1 indicates that the grid and
solution files are to be written as formatted Plot3D files. A value of 2 indicates that they are to be
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Table 10: Inputs for physical modeling (default values in italics)

Variable Definition Value(s) Description
ivisc viscous terms 0 off

1 on

iturb turbulence model 0 none
1 LES - Smagorinsky
2 LES - Dynamic Smagorinsky
3 RANS - Baldwin-Lomax
4 Hybrid RANS - LES using Baldwin-Lomax
5 LES - Vreman’s model
6 RANS - Spalart-Allmaras

csmg Smagorinsky coefficient 0.01

prt turbulent Prandtl number 0.9

ibled Baldwin-Lomax edge limiter 25

iblpk Baldwin-Lomax peak selection 1

fsmach freestream Mach number 0.5

aoa angle of attack 0.0 degrees

pinf freestream pressure 2116.8 lbs
ft2

units: f
l2

tinf freestream temperature 530.0 R units: T

gam ratio of specific heats 1.4

iunits system of units 1 British Imperial System (BIS)
2 Système International (SI)

rgas specific gas constant 1716.0 ft·lb
slug·R units: l·f

m·T

csuth1 Sutherland’s law constant 1 2.27 · 10-8 slug/(ft · s ·R1/2) units: m/(l · t · T 1/2)

csuth2 Sutherland’s law constant 2 198.72 R units: T

pr Prandtl number 0.72

plfac pressure limiter factor 0.1 0.0 ≤ plfac ≤ 1.0

ittlim total temperature limiter 0 off
1 on

ttlim total temperature limit ∞
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written as Fortran unformatted Plot3D files.

nprnt, integer: Output file write frequency. The code can write several pieces of data to the
output file in order to check on the solution’s progress and stability. These items include the
total accumulated solution time along with the values and locations of the minimum time step,
minimum pressure, maximum total temperature, and maximum Spalart-Allmaras variable. The
variable nprnt is the frequency, in terms of the number of iterations, that this data is printed.
WRLES typically runs for hundreds of thousands of iterations and setting the frequency greater
than one can reduce the output file size.

icp, integer (0 or 1): Checkpoint file. Setting this variable to 1, writes a solution on Fortran unit
21 every ncp iterations.

ncp, integer: Checkpoint file frequency. The frequency of writing checkpoint files, in iterations.

iffs, integer (0, 1, or 2): Flowfield save. Setting this variable to 1 or 2 writes files on sequential
Fortran unit numbers beginning with the value specified in the isav input parameter. A value of
1 uses a write frequency based on nffs iterations. A value of 2 uses a write frequency based on
tffs seconds (approximate).

nffs, integer: Frequency of flowfield save in iterations.

tffs, real: Frequency of flowfield save in solution time (seconds).

isav, integer: Flowfield save Fortran unit number. The initial Fortran unit number for the flowfield
save. If time averaging is active, the time-averaged file will be saved on unit isav + 10000. If the
Spalart-Allmaras model is active, the turbulence model data will be saved on unit isav + 20000.
Each subsequent file is incremented by one. To prevent overwriting existing files, isav must be
changed when restarting WRLES from a previous solution.

itav, integer (0, 1, or 2): Time averaging. Setting this variable to 1 or 2 activates time averaging
of the flowfield. A value of 1 uses a time-averaging frequency based on ntav iterations. A value of
2 uses a time-averaging frequency based on ttav seconds (approximate).

ntav, integer: Frequency of time averaging in iterations.

ttav, real: Frequency of time averaging in solution time (seconds).

itres, integer (0 or 1): Time reset. Setting this value to 1 resets the solution time to zero when
the code starts. Be careful to change this variable back to zero before starting another run.

iudat, integer (0, 1, or 2): Write user defined data. Setting this variable to 1 or 2 activates writing
user defined data. A value of 1 writes user data at a frequency based on nudat iterations. A value
of 2 writes the data at a frequency based on tudat seconds (approximate).

nudat, integer: Frequency of writing user data in iterations.
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tudat, real: Frequency of writing user data in solution time (seconds).

iudsav, integer: Initial Fortran unit number for the user data. The file unit number is incremented
by one for each write.

itavin, integer (0 or 1): Initialize time averaging. Forces the reinitialization of the time-averaging
file. Be careful to change this variable back to zero before starting another run.

itt, integer (0 or 1): Max. total temperature output. Setting this variable to 1 outputs the
maximum total temperature and its location in the solution.

isa, integer (0 or 1): Max. Spalart-Allmaras variable output. Setting this variable to 1 outputs
the maximum Spalart-Allmaras variable and its location in the solution.

ipost, integer (0 or 1): Post processing data. Setting this variable to 1 activates the post-processing
routines at the end of a run.

imet, integer (0 or 1): Metric and Jacobian output. Setting this variable to 1 writes the grid
transformation metrics and Jacobian to Fortran unit 27.

ics, integer (0 or 1): Cell size output. Setting this variable to 1 outputs the size of every grid cell
in each coordinate direction to Fortran unit 28.

4 Grid Based Specifications

Following the line terminating the namelist, a series of lines specifying information related to the
grid begins. Three types of data are provided: boundary conditions, hole points, and exit zones.
This data is grouped by block and all three pieces of information are provided for a grid block
before the next grid block’s information begins.

4.1 Boundary Conditions

Boundary conditions are available to simulate a wide variety of flows. Because the width of the
central difference stencil is reduced as the boundary is approached, thus reducing the resolution,
most of the boundary conditions do not attempt to maintain high resolution. This is true for wall,
inflow and outflow boundaries. High resolution is maintained for periodic, cylindrical centerline and
block interface boundaries. The following section, Sec. 4.1.1 explains how to specify the boundaries
in the input file. Sections 4.1.2, 4.1.3, 4.1.4, and 4.1.5 provide descriptions of the inflow/outflow
boundaries, surface boundaries, axis boundaries, and periodic and interface boundaries respectively.
Table 14 summarizes the boundary conditions and the information needed to specify them in the
input file.
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Table 11: Inputs for input/output specification (default values in italics)

Variable Definition Value(s) Description
ifin grid and solution read file format 1 formatted

2 Fortran unformatted

ifout grid and solution write file format 1 formatted
2 Fortran unformatted

nprnt output file write frequency 1 number of iterations

icp write a checkpoint file 0 off
1 on

ncp frequency of checkpointing 0 number of iterations

iffs save the flowfield 0 off
1 on, save every nffs iterations
2 on, save every tffs seconds

nffs flowfield save frequency, iterations 0 number of iterations

tffs flowfield save frequency, time 0 seconds

isav unit number for first flowfield file 1000 Fortran unit number

itav time averaging 0 off
1 on, average every ntav iterations
2 on, average every ttav seconds

ntav time averaging frequency, iterations 0 number of iterations

ttav time averaging frequency, time 0 seconds

itres reset time to zero 0 no
1 yes

iudat call user data subroutine 0 off
1 on, call every nudat iterations
2 on, call every tudat seconds

nudat user data frequency, iterations 0 number of iterations

tudat user data frequency, time 0 seconds

iudsav unit number for first user data file 5000 Fortran unit number

itavin initialize time averaging 0 off
1 on

itt print max. total temperature 0 off
1 on

isa print max. Spalart-Allmaras variable 0 off
1 on

ipost post-process data 0 off
1 on

imet output grid metrics 0 off
1 on

ics output cell size 0 off
1 on
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4.1.1 Boundary Specification

The first line is not read and can be used for comments. The second line contains the number of
boundary conditions for this block (a minimum of six is required). The subsequent lines contain the
boundary condition specifications. Table 12 describes the variables in the specification. A sample
follows.

Start of Boundary Conditions

maxbc

iside icnst ibcmin1 ibcmax1 ibcmin2 ibcmax2 ibc iint var1* var2* var3* var4*

.

.

.

iside icnst ibcmin1 ibcmax1 ibcmin2 ibcmax2 ibc iint var1* var2* var3* var4*

First, the grid plane is identified through the iside, icnst, ibcmin1, ibcmax1, ibcmin2, and
ibcmax2 variables. The boundary specifier iside tells the code 1) which computational direction
is normal to the boundary, 2) whether the boundary is a constant i, j, or k plane, and 3) if it is
a minimum or maximum boundary. For a minimum boundary, one must increase the grid index
(from the value specified by icnst) to move into the domain. For a maximum boundary, one must
decrease the grid index to move into the domain. For example, an inflow plane represented by i = 1
results in iside = 1 and icnst = 1. An upper wall represented by the plane at j = 99 results in
iside = 4 and icnst = 99. The order of the varying indices is always i before j, before k. For
example if j is the constant index, the first varying index is i and the second is k. Table 13 provides
more detail.

Following the variables that define the grid plane, the boundary condition, ibc, the interface number
iint, and the auxilary variables var1 to var4 are listed. For boundaries that serve as interfaces
between blocks, the variable iint must be a unique integer that is shared with its corresponding
interface in another block. For all other boundaries, this variable must be specified (typically set
to zero), but is not used. The auxilary variables do not need to be listed unless the boundary
condition requires them. See the input files in sections 8.1 and 8.2 for examples of how to specify
the boundary conditions.

4.1.2 Inflow and Outflow Boundaries

Subsonic Inflow(s)
This boundary specifies the total pressure and total temperature of the flow. The incoming flow
is assumed to be moving in the positive x-direction. Flow angle with respect to the y-direction
can be specified through the freestream angle of attack, aoa. There are two different subsonic
inflow boundary conditions that vary in the way they handle the outgoing wave. The first option
(ibc = 1) simply extrapolates the axial velocity. The second (ibc = 7) extrapolates the outgoing
characteristic, and is the recommended option. This formulation performs a Newton iteration on
the static temperature and can have stability issues during startup transients. If this occurs, one
can start the calculation with ibc = 1 and switch to ibc = 7 after the startup transients have been
eliminated.
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Table 12: Variables in boundary condition specification (* as needed)

Variable Description

integers

maxbc number of boundary conditions specified

iside i/j/k, and min/max boundary indicator (see Table 13)

icnst value of the constant index of the boundary

ibcmin1 minimum of the first varying index of the boundary

ibcmax1 maximum of the first varying index of the boundary

ibcmin2 minimum of the second varying index of the boundary

ibcmax2 maximum of the second varying index of the boundary

ibc number representing boundary condition type

iint block interface number

reals

var1 variable necessary for boundary condition specification*

var2 variable necessary for boundary condition specification*

var3 variable necessary for boundary condition specification*

var4 variable necessary for boundary condition specification*
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Table 13: iside boundary indicator

1st varying 2nd varying
iside description index index

1 i minimum boundary j k

2 i maximum boundary j k

3 j minimum boundary i k

4 j maximum boundary i k

5 k minimum boundary i j

6 k maximum boundary i j

Supersonic Inflow(s)
These boundaries fix the conservation variables based on the following: ibc = 2 uses the freestream
conditions (M∞, p∞, and T∞) specified in the namelist, and ibc = 8 uses the Mach number, static
pressure and static temperature in the individual boundary condition specification, var1, var2,
and var3. The incoming flow is assumed to be moving in the positive x-direction. Flow angle with
respect to the y-direction can be specified through the freestream angle of attack.

Farfield Characteristic Boundary
This boundary imposes the freestream conditions, specified in the namelist, at a theoretical point
infinitely far from the domain. Incoming and outgoing characteristic waves are used to determine
the conditions at the boundary. This boundary should be placed far away from the primary area
of interest. For best results, the boundary should not be parallel to the freestream flow.

Subsonic Outflow
The static pressure is held to the specified value on this boundary. The other variables are extrap-
olated from the interior of the domain. Care must be taken so that reverse flow does not reach this
boundary. In such a case the boundary becomes unstable.

Supersonic Outflow
All variables are extrapolated from the interior of the domain.

Mixed Outflow
This boundary condition computes the local Mach number and applies the appropriate subsonic or
supersonic outflow conditions. Static pressure must be specified for the subsonic portion.

Subsonic Outflow/Inflow
This boundary is intended as a more robust subsonic outflow condition for cases where a transient
reverse flow condition may occur. The normal velocity at the boundary is computed. For regions
of outflow, the standard subsonic outflow boundary is applied. Where there is inflow a simplified
subsonic inflow boundary is applied. The total pressure and temperature of the flow must be
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Table 14: Boundary condition numbering and required inputs

Auxilliary Variable
Boundary Condition ibc 1 2 3 4

subsonic inflow, extrapolate velocity 1 p0 T0

subsonic inflow, extrapolate characteristic 7 p0 T0

supersonic inflow, uses freestream values from the namelist 2
supersonic inflow, specified values 8 M p T
characteristic boundary, uses freestream values from the namelist 3
subsonic outflow, static pressure specified 11 p
supersonic outflow 12
mixed subsonic/supersonic outflow 13 p
subsonic inflow/outflow 14 p0 T0 p
synthetic eddy turbulent inflow 16 uconv lT

digital filtering (uniform grid) turbulent inflow 18 uconv lTx lTy lTz
digital filtering (computational grid) turbulent inflow 19 uconv lTx lTy lTz
inviscid (slip) wall 21
viscous wall, adiabatic 22
viscous wall, isothermal 23 Twall
viscous wall with turbulent boundary layer, adiabatic 24
viscous wall with turbulent boundary layer, isothermal 25 Twall
axis at jmin, average over k 31
axis at jmin, average over i 32
axis at jmin, difference across 33
periodic/overlap, 11-point stencils 40
periodic/overlap, 12-point stencils 41
periodic/overlap, 3-point stencils 42
periodic/overlap, 5-point stencils 44
periodic/overlap, 7-point stencils 46
periodic/overlap, 9-point stencils 48
block interface, 11-point stencils 50
block interface, 13-point stencils 51
block interface, 3-point stencils 52
block interface, 5-point stencils 54
block interface, 7-point stencils 56
block interface, 9-point stencils 58
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specified for the inflow portion. Static pressure must be specified for the outflow portion. Care
must be taken when using this condition, and it recommended that the problem be formulated in
such a way as to remove the reverse flow at the boundary.

Synthetic Eddy Method Turbulent Inflow
The synthetic eddy method (SEM) provides a means to produce quasi-realistic turbulence at an
inflow boundary [43]. This allows the user to forego expensive computations that include transition
regions or recycling/rescaling to produce the turbulence. The boundary condition produces a time-
varying velocity field that replicates a mean flow and Reynolds stress profile specified by the user.
The method works by producing a random distribution of synthetic eddies, which are convected
through a volume surrounding the inflow plane. The influence of the eddies on each point of the
boundary is computed at each time step.

The SEM boundary condition is only written for an i-minimum (iside = 1) plane, with the flow
in the positive x-direction. The flow profile and Reynolds stresses should vary in the j-coordinate.
If there is a wall, it must be on the jmin or jmax boundary. The specified profile replicated at
every k-plane. The convective velocity and the length scale of the synthetic eddies are specified as
auxiliary variables (var1 and var2 respectively). The profile is specified in a formatted file that
is read on Fortran unit 100 + nb, where nb is equal to the number of the grid block where the
boundary is located. In the file, there must be one line for each j-location. Each line contains
the following variables: y-coordinate - y, average axial velocity - u, axial Reynold normal stress -
< uu >, transverse Reynolds normal stress - < vv >, spanwise Reynolds normal stress - < ww >,
primary Reynolds shear stress - < uv >, average density - ρ, and average temperature - T . The
file is read by the following Fortran code.

semunit = 100 + nb

do j=jmin,jmax

read(semunit,*) y(j),u_avg(j),r11(j),r22(j),r33(j),r12(j),rho_avg(j),t_avg(j)

end do

For boundary layers, it has been found that convective speeds on the order of the edge velocity and
length scales of δ/10 to δ/20 provide good results.

Digital Filtering Turbulent Inflow
Digital filtering provides an alternative means to SEM to produce turbulent structures at an inflow
boundary [44]. This method digitally filters a random signal to produce the turbulent structures.
Digital filtering allows for the specification of different length scales in each direction. The widths
of the filters are set to the turbulent length scales, which results in eddies of the desired size.
The convective velocity and three length scales (lTx , lTy , and lTz ) are set in the boundary condition
specification as auxiliary variables var1 - var4 respectively. There are two options for digital
filtering inflow. In the first, ibc = 18, the generation of the turbulent structures is done on a
uniform grid and the structure sizes are inherently uniform across the inflow plane. The results
are then interpolated onto the computational grid. Here, the input flow profile does not need to
match the computational grid. In the second version, ibc = 19, the digital filtering is done on the
computational grid and the digital filter widths are locally scaled to provide uniform structures.
Here, the input flow profile must be matched to the computational grid. In either case, the input
file has the same format and is read on the same Fortran unit as the SEM inputs described above.
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4.1.3 Surface Boundaries

Inviscid (Slip) Wall
Flow tangency is enforced on the boundary. This condition can be used as a solid wall condition
for an inviscid simulation, or as a plane of symmetry.

Viscous (No-Slip) Walls
The no-slip condition for viscous flow is applied. The velocity at the wall is set to zero and the
pressure gradient normal to the wall is set to zero. This boundary is used for laminar flow or for DNS
and LES simulations when no RANS turbulence model is applied. ibc = 22 imposes an adiabatic
wall (no heat transfer at the wall). ibc = 23 imposes an isothermal (constant temperature)
condition at the wall.

Viscous (No-Slip) Wall with Turbulent Boundary Layer
This boundary condition imposes the no-slip condition at the wall and uses a RANS-based turbulent
viscosity in the boundary layer adjacent to the wall. The specific RANS model is specified using
the iturb variable. By using separate boundary types for no-slip walls and walls with turbulent
boundary layers, transition can be crudely modeled for a RANS calculation. Wall distance for the
turbulence model is computed along grid lines emanating from the boundary. An adiabatic wall is
selected with ibc = 24, and an isothermal wall is selected with ibc = 25.

4.1.4 Axis Boundaries for Cylindrical Grids

The following boundaries are for meshes with an o-grid topology, where one computational surface
is collapsed to form the axis. The WRLES code is only setup to handle axis boundaries on the
jmin surface.

Averaging
This condition averages each of the flow variables around the axis and applies this average to the
axis. There are two options depending on which computational coordinate varies around the axis :
one averages over the k-index (ibc = 31) and the other averages over the i-index (ibc = 32). The
collapsed surface that stems from this approach produces very small grid cells, resulting in very
small time steps. This may be overcome with the next option.

Differencing Across the Axis
The centerline differencing condition (ibc = 33) computes the derivative across the axis centerline
allowing the equations to be solved on this surface. This boundary condition eliminates the aver-
aging condition and improves the time step restriction due to the small grid cells. The formulation
is taken from Hixon [40], and the concept is illustrated in figure 5. The grid is constructed with a
cylindrical void on the centerline to avoid a collapsed surface. The cell spacing is set such that the
diameter of the void is equal to the adjacent radial grid spacing. Then, a stencil is constructed in
such a manner that the points on the opposite side of the void are used.
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4.1.5 Periodic and Block Interface Conditions

Periodic/Overlap
These boundary conditions are used for overlapping boundaries and periodic boundaries found
within the same block. Examples of overlapping boundaries of this type are the connections (some-
times called branch cuts) in o-grid and c-grid topologies. To simulate periodicity in instances where
the boundaries reside in different grid blocks, block interface boundaries should be use. In order to
maintain accuracy across the boundaries, the grid must be overlapped. For a differencing scheme
with N points in the stencil, the overlapped portion of the grid must share N − 1 common planes.
For example, if you are using the 11-point DRP scheme, the grid must have 10 common overlapped
planes. Standard scheme stencils are one greater than the order of accuracy; a 4th-order scheme
uses a 5-point stencil. Note that these boundary conditions simply copy the data to the corre-
sponding plane on the opposite boundary. If periodicity is required on a semi-cylindrical geometry,
the routines must be modified to deal with the radial and azimuthal velocity components.

Block Interface
These boundary conditions are used for passing data between grid blocks using MPI. The block
boundaries must overlap to maintain the numerical scheme’s accuracy. For a differencing scheme
with N points in the stencil, the overlapped portion of the grid must share N − 1 common planes.
For example, if you are using the 11-point DRP scheme, the grid must have 10 common overlapped
planes. Standard scheme stencils are one greater than the order of accuracy; a 4th-order scheme
uses a 5-point stencil. See section 2.1 and figure 4 for more details. Block interfaces are numbered
with each corresponding pair of interface boundaries sharing a unique number.

4.2 Hole Points

To represent complex geometries with block structured grids, it is sometimes necessary to place
grid points in regions where there is no fluid flow. These points are not computed in the solver
and are usually referred to as hole points. Hole points are specified following the block’s boundary
conditions. The first line following the last block boundary condition is for comments. The second
line lists the number of holes in the block. If there are no hole points in the block, a zero must be
specified. The following lines (if any) list the minimum and maximum i, j, and k indices for each
hole.

Start of Hole Specification

maxhol

ihmin ihmax jhmin jhmax khmin khmax

.

.

.

ihmin ihmax jhmin jhmax khmin khmax

Table 15 describes the variables in the specification.

NASA/TM—2019-220192 55



j,k 

j+1,k 

j+2,k 

j+3,k 

j-1

j-1, k+kmax/2

j, k+kmax/2 

Figure 5: Differencing across singularity created by o-grid axis

Table 15: Variables in hole specification

Variable Description

ihmin minimum i-index of the hole

ihmax maximum i-index of the hole

jhmin minimum j-index of the hole

jhmax maximum j-index of the hole

khmin minimum k-index of the hole

khmax maximum k-index of the hole
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4.3 Exit Zones

Exit zones are regions of the grid adjacent to a boundary where additional work is done to damp out-
going waves that would otherwise reflect from the boundary and contaminate the interior solution.
Typically in these zones, the grid spacing is gradually increased as the boundary is approached.
This reduced resolution damps the waves. Additional dissipation is added through source terms
or additional solution filtering. The dissipation is scaled such that it is zero at the beginning of
the zone and a maximum at the boundary. Applying exit zones is not an exact science and some
experimentation in damping parameters may be necessary. The exit zones are specified similarly
to the hole points and follow them in each grid block’s specifications. The first line is a comment
line. The second line lists the number of exit zones. If no exit zones are required for this block, a
zero must be used. For each exit zone a pair of lines are input; the first specifying the damping
characteristics, and the second specifying the grid indices.

Start of Exit Zone Specification

maxez

ceza, cezb, ieztype, iezside

iezmin iezmax jezmin jezmax kezmin, kezmax

.

.

.

ceza, cezb, ieztype, iezside

iezmin iezmax jezmin jezmax kezmin, kezmax

Table 16 describes the variables in the specification. The source-term-type damping adds a source
into the governing equations to force the flow towards the freestream values. The filtering-type
damping applies additional filtering in the exit zone. The filtering appears to be more robust and
has been used for the bulk of WRLES simulations. The strength of the damping is gradually
increased over the distance of the exit zone until it is full strength at the boundary. The strength
varies as a(∆s)b, where a is a coefficient of damping, ∆s is the normalized distance from the
boundary and b is the exponent that ramps up the damping.

5 Data Processing

Scale-resolving simulations produce massive amounts of data. High-quality simulations contain tens
or hundreds of million of data points per time step. WRLES has several mechanisms to collect and
process this data within the code. The following sections describe these data processing options.
All of these routines require alteration of the relevant subroutines in order to tailor the results
to the problem at hand. It is important to note that the implicit none directive is used in all
routines. If a new variable is created, it must be declared either in the subroutine (recommended)
or in the data module.
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Table 16: Variables in exit zone specification

Variable Description

ceza coefficient of damping

cezb exponent of damping

ieztype type of damping
1 = source terms
4 = 4th order filter
6 = 6th order filter

iezside same as iside for boundary conditions

iezmin minimum i-index of the exit zone

iezmax maximum i-index of the exit zone

jezmin minimum j-index of the exit zone

jezmax maximum j-index of the exit zone

kezmin minimum k-index of the exit zone

kezmax maximum k-index of the exit zone
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5.1 Time Averaging

Analysis of turbulent flows involves computing time averages of the various flow quantities. These
averages are typically used to compute mean quantities, turbulence intensities, and higher order
moments. Time averaging is controlled by the itav variable. Setting it to 1 will compute the time
averages every ntav iterations. Setting it to 2 will compute the time averages every ttav seconds.
Note that for this time-based sampling frequency, the code will perform the averaging when the
solution time since the last average is greater than or equal to ttav. It will not adjust the time
step in order to hit the sampling frequency exactly. It is recommended that the user exactly control
the time step (∆t) by setting acfl < 0, and specifying the sampling frequency using the number
of iterations.

Sample code showing the data needed to compute turbulence intensities, namely the averaging of
the three velocity components and their squares, is presented below. First, the number of variables
to be time averaged must be set in the parameters.f module. The following line must be modified
to set nvartav to the correct value.

integer, parameter :: nvartav = 6

Next, the subroutine tavew.f must be modified to compute the variables to be averaged and then
insert them into the running time-averaged array. Below, the three velocity components, u, v, and
w, are computed from the solution vector. Then, the variable to be time averaged is multiplied by
the factor b and summed into one component of the qavg array, which is multiplied by the factor
a. The factors a and b are the time-weighted contributions of the previous and current flow values,
respectively.

u = q(i,j,k,2)/q(i,j,k,1)

v = q(i,j,k,3)/q(i,j,k,1)

w = q(i,j,k,4)/q(i,j,k,1)

qavg(i,j,k,1) = a*qavg(i,j,k,1) + b*u

qavg(i,j,k,2) = a*qavg(i,j,k,2) + b*v

qavg(i,j,k,3) = a*qavg(i,j,k,3) + b*w

qavg(i,j,k,4) = a*qavg(i,j,k,4) + b*u**2

qavg(i,j,k,5) = a*qavg(i,j,k,5) + b*v**2

qavg(i,j,k,6) = a*qavg(i,j,k,6) + b*w**2

The code will output a PLOT3D function file containing the time-averaged quantities for the entire
flowfield. If a previous time-averaged file is found at startup, the code will continue averaging the
current solution. If no file is found, the code will initialize a new time-averaged solution. Initializing
a new time averaging file can also be forced by setting the input variable itavin to 1.

5.2 Periodic Output

WRLES has the ability to periodically write files based on iteration or solution time. These files
can be used to produce time histories, averages, or check point files.
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5.2.1 Flowfield

The entire flowfield can be output by setting the variable iffs. Similar to time averaging, a value
of 1 will output the flowfield every nffs iterations and a value of 2 will output the flowfield every
tffs seconds of solution time. As with time averaging, the time increment is not exact. The initial
solution file is written on the Fortran unit number specified by isav. Each subsequent file is incre-
mented by one. If time averaging is activated, the averaged data is output on 10000+isav. If the
Spalart-Allmaras turbulence model is activated, the turbulence data is output on unit 20000+isav.
Note that if a new run is started, the initial unit number reverts to isav, so old files will be
overwritten unless isav is adjusted.

The solution can also be periodically written on Fortran unit numbers as a checkpoint. In this
instance the last solution is overwritten at the new time. To activate this feature icp is set to 1.
The frequency of the checkpoint save is specified by iteration only using ncp.

5.2.2 User Defined Data

Additional periodic output of user defined data is also possible. This option was created to enable
saving time histories to produce spectra and other time dependent data. This feature is activated
by setting the variable iudat. Similar to time averaging, a value of 1 will output the flowfield every
nudat iterations and a value of 2 will output the flowfield every tudat seconds of solution time.
As with time averaging, the time increment is not exact. The initial solution file is written on the
Fortran unit number specified by iudsav.

The user must modify the udatsavem.f and udatsavew.f subroutines to suit their needs. In most
cases, modifying these routines requires some knowledge of the Message Passing Interface (MPI).
Routines ending in an m are run on the master process and do not have direct access to the data on
the worker nodes. Routines ending in a w are run on the worker nodes. The data computed on the
worker nodes must be passed to the master node via the MPI interface. Here it can be combined
with the other nodes’ data and output. An MPI buffer, udbuf, is set up for this purpose. The size
of the buffer can be altered by changing the following statement in the parameters.f module.

integer, parameter :: udbufsize = 9*realsize + 5*intsize

The variables realsize and intsize specify the sizes of the real and integer numbers in WRLES.
Setting the buffer to the correct size is done by simply changing the multiplier on these variables
to the correct number of those variables in the buffer.

5.3 Post-Processing

The post-processing routines offer the user the ability to process the solution using the same
numerics and framework as the flow solver. Most commercial post-processing software utilize low-
order numerics to compute derivatives, which will not accurately reflect the flowfield produced by
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the high-order differencing in WRLES. Boundary condition data is also readily available.

The subroutine postw.f performs the post-processing operations on each worker node. It can be
modified to suit the user’s needs. The array post(i,j,k,n) is intended to store the post-processed
data at each grid point. The number of variables in the array (the last index) is specified in the
parameters.f module by modifying the following line.

integer, parameter :: nvarpost = 5

This array is written as a PLOT3D function file. The released version of the code contains a postw.f

routine that computes the velocity derivatives using the same differencing scheme as selected for
the flow solver and outputs an array of vorticity, dilatation and magnitude of the strain rate tensor.

6 Parallelization

The code utilizes a hybrid parallelization paradigm which incorporates MPI and OpenMP. The
standard mode of operation is to decompose the domain into multiple grid blocks. Each block is
run on a separate compute node and data for the block interfaces is passed between nodes using
MPI. On each node, parallelization over multiple processors and/or cores can be accomplished with
OpenMP. Here, the work done within a Fortran do loop is divided across the available threads.
Typically the user would specify one OpenMP thread per available core. The use of OpenMP
where multiple processors or cores share the same memory eliminates the need to communicate
data between blocks, increasing efficiency. Please note that MPI is required to run the code even
if parallel computations are not necessary. The number of MPI processes required is equal to the
number of grid blocks plus one. The first process is deemed the “master” and performs I/O and
synchronization. The other processes are deemed the workers and perform the majority of the
computations. For efficiency, it is desirable to have one MPI process per available processor, but
this is not necessary.

For efficiency the work on each processor should be approximately equal; each grid block should
have a similar number of points. Creating a WRLES input file for a highly parallelized blocked grid
structure is not a trivial task, as the boundary conditions for each block must be specified manually,
including the interfaces to the other blocks. It is recommended that the grid be generated in as
few blocks as possible. This simplifies the task of generating the initial input file. A stand-alone
Fortran code, autosplit.f is available to split an existing grid and corresponding input file into
additional blocks for parallel processing.

The splitting code operates in two modes; automatic and manual. In both modes the code splits a
grid and input, and has the option to split either a solution or function file. In automatic mode,
autosplit partitions the grid based on the a user supplied input for the number of processors,
and boundary overlap requirement. The partitioning logic is rudimentary and may not be optimal.
These options are entered on the command line. It is recommended that the user experiment with
the number of processors in the input, as small changes can significantly affect the efficiency of the
partitioning. In manual mode, selected on the command line, the code reads a user supplied file
specifying the partitioning. The file format for the user specified partitioning is below. The first
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line contains: nblocks - the number of blocks in the new partitioned grid, noverlap - the number
of grid planes that are overlapped between blocks, and isolution - an indicator to select split grid
only (0), split grid and solution (1), or split grid and function file (2). Note that the grid and input
file must always be supplied. The subsequent nblocks lines contain: noldblock - the number of
the original block to be split, and the i, j, k minimum and maximum indices of the original block
that make up the new partition.

nblocks noverlap isolution

noldblock imin imax jmin jmax kmin kmax

.

.

.

noldblock imin imax jmin jmax kmin kmax

Autosplit outputs a file that can be used with the code, unautosplit. This code reads that file, and
the partitioned grid and solution/function file (optional) and recombines them into the original
block structure. Table 17 lists the Fortran unit numbers for the various files input and output by
autosplit.

Table 17: autosplit file unit numbers and formats

Unit Number
File Input Output Format

original WRLES input file 1 ASCII text file
manual partitioning input 4 ASCII text file
original grid file 10 PLOT3D grid
original solution/function file 11 PLOT3D solution/function file
partitioned WRLES input file 2 ASCII text file
unautosplit input file 3 ASCII text file
partitioned grid file 20 PLOT3D grid
partitioned solution/function file 21 PLOT3D solution/function file

The OpenMP parallelization is done by splitting the work of the Fortran do loops across the avail-
able processors/cores. In most instances the outermost computational grid index, the k-index, is
parallelized using the OpenMP compiler directives. The work in the inner nested loops is included
and hence maximizes the work for each thread. The number of threads is specified via the environ-
ment variable OMP NUM THREADS. OpenMP is not necessary for compiling and/or running the code.
If OpenMP is not used during the compilation process the OpenMP parallelization directives are
ignored. An example of a parallelized loop is
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!$OMP PARALLEL DO PRIVATE(k,j,i)

do k=1,mk(nb)

do j=1,mj(nb)

do i=1,mi(nb)

dudxi(i,j,k,1,1) = (cm1*(u(i+1,j,k,1)-u(i-1,j,k,1))

& +cm2*(u(i+2,j,k,1)-u(i-2,j,k,1))

& +cm3*(u(i+3,j,k,1)-u(i-3,j,k,1))

& +cm4*(u(i+4,j,k,1)-u(i-4,j,k,1))

& +cm5*(u(i+5,j,k,1)-u(i-5,j,k,1))

& +cm6*(u(i+6,j,k,1)-u(i-6,j,k,1)))

end do

end do

end do

7 Running

The following C-shell script provides a basic example of how to run WRLES. This script must be
adapted to your specific computational platform. Note that not all files are required for a particular
run.
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#!/bin/csh

#

# set environment variable to allocate number of OpenMP threads

#

setenv OMP_NUM_THREADS 5

#

# link input files to fortran units

#

ln input fort.1

ln grid_in.x fort.10

ln soln_in.q fort.11

ln alg_turb_in.fun fort.12

ln sa_turb_in.fun fort.13

ln tavg_in.fun fort.15

ln turb_bc.dat fort.101

#

# run wrles

#

mpirun -np 2 wrles > output

#

# give output files descriptive names

#

mv fort.20 grid_out.x

mv fort.21 soln_out.q

mv fort.22 alg_turb_out.fun

mv fort.23 sa_turb_out.fun

mv fort.25 tavg_out.fun

mv fort.27 metrics.fun

mv fort.28 cellsize.fun

#

# remove input file fortran units

#

rm -f fort.1

rm -f fort.10

rm -f fort.11

rm -f fort.12

rm -f fort.13

rm -f fort.15

rm -f fort.16

8 Examples

Two basic examples are provided to show the user how to set up a typical input file.
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8.1 Flat Plate

A sample input file is given for a simple three-dimensional flat plate case. The freestream Mach
number is 0.2 and the freestream static pressure and temperature are 2116.8 psf and 519 R. A
schematic of the computational boundaries is shown in figure 6. The grid for this case is a single
block that has the maximum dimensions of 101x61x31 for the i-, j-, and k-directions, respectively.
The plate surface is represented by the j-min boundary (j = 1). A short section of inviscid wall
is specified upstream of the plate to simulate a freestream flow, and the plate starts at i = 21.
Spanwise periodicity is set up by specifying periodic boundaries for the k-min and -max boundaries.
The inflow at i = 1 is set to hold total pressure and total temperature constant (subsonic inflow
boundary). The outflow is set to hold the static pressure constant (subsonic outflow). A freestream
characteristic-based boundary is set on the j-max boundary. This boundary is angled relative to
the freestream velocity. This removes any ambiguity as to the flow direction at the boundary, which
can cause numerical problems.

viscous'wall'
j,min,'iside'='3'

inviscid'wall'
j,min,'iside'='3'

su
bs
on

ic
'in
flo

w
'

i,m
in
,'i
sid

e'
='
1'

su
bs
on

ic
'o
u7

lo
w
'

i,m
ax
,'i
sid

e'
='
2'

characteris=c'frees
tream'

j,max,'iside'='4'

periodic'
k,'min'&'max,'iside'='5'&'6'

Figure 6: Flat plate schematic
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$inputs

niter = 100

acfl = 0.7

isch = 43

iorder = 13

idmp = 113

sigma = 0.25

fsmach = 0.2

pinf = 2116.8

tinf = 519.00

iinit = 1

/

Boundary Conditions

7

1 1 1 61 1 31 7 0 2176.7 519.15

2 101 1 61 1 31 11 0 2116.8

3 1 1 20 1 31 21 0

3 1 21 101 1 31 22 0

4 61 1 101 1 31 3 0

5 1 1 101 1 61 41 0

6 31 1 101 1 61 41 0

Holes

0

Exit Zones

0

8.2 Nozzle

The following case is a more complex example representative of the cases typically run with WRLES.
The case represents a jet flow emanating from a round nozzle. The grid consists of three grid blocks:
the internal nozzle flow, the freestream inflow over the nozzle, and the jet region downstream of
the nozzle. The overlapping grid requirement complicates the grid blocking topology, as there are
multiple ways to represent the geometry. This example shows the recommended practice which
avoids any ill-defined interface problems (figure 7). It is recommended that the downstream block
be constructed to overlap into the two upstream blocks. This overlapped region must include the
empty space between the two upstream blocks. The grid points that fall in the empty space are
designated as hole points and are not computed. Figure 7 shows a detail of this region. The
overlapped region, hole points (in purple), and coincident points can be seen in the exploded view.

For this case, the sizes of the nozzle, freestream inflow and jet region blocks are 45x55x132,
60x65x132, and 435x148x132, respectively. The overlapped blocks share 12 common planes. The
nozzle lip is modeled with 30 points in the j-direction. The grids form a cylindrical shape using
an o-grid topology. The centerline is treated using a type 33 boundary, which computes finite
differences across the centerline. An exit zone that uses a sixth-order filter is located over the last
26 points of the domain in block 3. More details on this approach using WRLES can be found in
reference [6].
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(b) Exploded view of nozzle grid

Figure 7: Nozzle grid blocking scheme
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$inputs

niter = 100000

acfl = 0.7

isch = 43

iconsv = 0

iorder = 13

idmp = 123

sigma = 0.25

ivisc = 1

fsmach = 0.05

pinf = 2116.8

tinf = 519.0

iinit = 0

/

Block 1 - Internal Nozzle

6

1 1 1 55 1 132 1 0 2332.7 941.40

2 45 1 55 1 132 51 1

3 1 1 45 1 132 33 0

4 55 1 45 1 132 22 0

5 1 1 45 1 55 41 0

6 132 1 45 1 55 41 0

Holes

0

Exit Zones

0

Block 2 - Freestream Inflow

6

1 1 1 65 1 132 1 0 2120.5 519.26

2 60 1 65 1 132 51 2

3 1 1 60 1 132 22 0

4 65 1 60 1 132 3 0

5 1 1 60 1 65 41 0

6 132 1 60 1 65 41 0

Holes

0

Exit Zones

0

Block 3 - Jet Region

10

1 1 1 55 1 132 51 1

4 55 1 12 1 132 22 0

1 12 55 84 1 132 22 0

3 84 1 12 1 132 22 0

1 1 84 148 1 132 51 2

3 1 1 435 1 132 33 0

4 148 1 435 1 132 3 0

5 1 1 435 1 148 41 0

6 132 1 435 1 148 41 0

2 435 1 148 1 132 11 0 2116.8

Holes

1

1 11 56 83 1 132

Exit Zones

1

0.100 1.000 6 2

410 435 1 148 1 132
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9 Recommended Practices

This section contains useful advice on how to increase the likelihood of a successful simulation.
This is based on the author’s experience running the WRLES code for several applications, but is
by no means a definitive set of rules.

1. The accuracy of a scale-resolving turbulent simulation is directly tied to the resolution of
the computational grid. Extremely fine grids must be used in order to resolve the turbulent
structures and the cascade of turbulent energy from the large scales down to the dissipative
scales. Grid refinement should be done as a matter of course. Choi and Moin [15] provide a
means of estimating the required number of grid points based on the Reynolds number of the
flow. In addition, Georgiadis, Rizzetta, and Fureby [45] provide the following grid spacings
in wall units for well resolved boundary layers. For large-eddy simulation

50 ≤ ∆x+ ≤ 150, ∆y+ < 1, 15 ≤ ∆z+ ≤ 40 (78)

and for direct numerical simulation

10 ≤ ∆x+ ≤ 20, ∆y+ < 1, 5 ≤ ∆z+ ≤ 10 (79)

2. Grid stretching and grid skewness should be kept to an absolute minimum. Grid stretching,
the increase in size of adjacent cells, should be less than 5 percent in regions of interest.

3. The grid should be generated in as few blocks as possible in order to simplify the generation
of the input file. Use the autosplit.f utility to partition the grid and input file for execution
on parallel computational platforms.

4. WRLES is written to handle central differencing schemes with stencils up to 13 points. If a
lower-order/resolution scheme is selected, the full 13-point stencil is still computed with the
outer coefficients set to zero. Hence, there is no computational speed to be gained with the
lower order schemes. However, the grid overlap necessary for block to block communication
is less. This may improve code efficiency, but it has not been quantified. For this reason,
the DRP schemes or the 10th- or 12th-order standard schemes are suggested to maximize
resolution and minimize error. For the DRP schemes, their matching solution filter should be
selected. For the standard schemes, the filter of the same order, or one order higher should
be chosen. The filter coefficient should be initially set to one.

5. When starting a simulation, select the time step by specifying the CFL number. For most of
the schemes in the code, a stable CFL number should be in the range of 0.3 to 1.2. The CFL
is highly dependent on the flowfield and grid. The CFL may need to be set to a lower value in
the initial stages while startup transients are being convected out of the domain. However, if
the maximum stable CFL number is too low after the initial transients have cleared, consider
refining or smoothing the grid. If the initial transients cause numerical instabilities that
cannot be successfully bypassed, consider using a solution from a RANS code as the initial
conditions. Also, the boundary conditions can be modified to reduce the initial transients.
For example, when a subsonic inflow boundary is used, the total pressure could be slowly
adjusted upward to alleviate a large gradient at the inflow that will propagate downstream.
The minimum static pressure written to the output file is a good indicator of the solution’s
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stability. Rapid drops in pressure typically indicate the solution is diverging or ”blowing up.”
The location of the minimum pressure, also written to the output, can help the user diagnose
the cause of the instability.

6. Once a stable CFL number has been found, the filter coefficient should be systematically
halved and evaluated until the minimum stable value is found. This minimizes the numerical
dissipation in the solution, a key to a good LES.

7. Once a stable solution has been demonstrated with the current CFL and filter coefficient,
and all transients have been convected out of the computational domain, time averaging and
other data extraction can begin.

8. When restarting a simulation from a previous run, the files output from the previous run are
used as inputs to the new run. The solution file, Spalart-Allmaras turbulence file, and time
averaging file must be copied or moved to their input file counterparts, or input Fortran unit
numbers.

9. The variables iinit, itres, and itavin must be used with extra care. These variable reini-
tialize the solution, solution time, and time averaging, respectively. They must be removed
or set to zero before the next run, otherwise they will continue to perform the reinitialize
function.
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