National Aeronautics and Space Administration



#### Status of NASA Research on Projectile Shape Effects-Impact Simulations

#### J. Miller<sup>a,b</sup>, E. Christiansen<sup>c</sup>, J. Hyde<sup>b</sup>

<sup>a</sup>University of Texas at El Paso, 500 W. University Blvd., El Paso, TX 79968 <sup>b</sup>Jacobs, NASA Johnson Space Center, Houston, TX 77058 <sup>c</sup>NASA Johnson Space Center, Houston, TX 77058

7 May 2019

# Numerical evaluation of a Whipple shield has yielded a ballistic model for cylindrical projectiles



- A numerical model of a Whipple shield covered with a thermal-blanket that is representative of operational shields has been developed using CTH
  - The shield model has been evaluated against existing test data
  - The projectile model has been developed from preexisting models for graphite-epoxy materials
- The model has been used to identify projectile characteristics at the ballistic limit for spherical and cylindrical projectiles
  - Considered normal impacts of the shield at 7 km/s
  - Varied the angle between the axis-of-symmetry and velocity vector
  - Varied the length to the diameter ratio over a broad range
- The results have been consolidated into a generalized model that can be adapted to existing spherical models

## Simulations explored a Whipple shield with an external thermal blanket



Schematic for numerical simulation (layers scaled by mass; separations to scale), which represents a previously considered shield. [Lyons2013, Davis2013]



#### National Aeronautics and Space Administration Shield model validation using spherical, steel projectiles



G. I. Kerley, "Equations of State for Composite Materials", KPS99-4, December (1999).

Steinberg, D.J., "Equation-of-state and strength properties of selected materials", UCRL-MA-106439 (1991).

G. I. Kerley, "Theoretical equation-of-state for aluminum", International Journal of Impact Engineering, 5, pp. 441-449 (1987).

G. I. Kerley, "Multiphase equation-of-state for iron", SAND93-0227 (1993).

Circles-F. Lyons, NASA Johnson Space Center report 66540 (2013) Circles-B. A. Davis, NASA Johnson Space Center report 66578 (2013) Diamonds-J. E. Miller, NASA Jonson Space Center report 67212 (2018) Open symbols-Intact shield wall Circles-Impact tests Filled symbols-Perforated shield wall Diamonds-Simulation results

#### Simulations can be used to augment testing especially in difficult to obtain conditions





Spheres require about four ballistic variables:  $\mathfrak{B}[\mathcal{D}, U, \theta, \mathcal{M}]$ 

## Even extending to axisymmetric shapes adds variables that greatly expand parameter space







Non-spherical shapes add additional ballistic variables:  $\mathfrak{B}[\mathcal{D}, \mathcal{L}, U, \theta, \mathcal{M}, \varphi, \psi]$ 

#### Simulations have identified the critical length of a cylinder aligned to the velocity vector



### Simulations have identified the critical length of a cylinder rotated orthogonal to the velocity vector

![](_page_7_Figure_2.jpeg)

#### A study has yielded a critical length model based on cylinder diameter and attack angle

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

 $L_{Cyl}[D_{Cyl}, \alpha] = (0.5 \cos[\alpha]^2 + 3.04 \operatorname{Coth}[0.51 (9.26 - 26.79 \sin[\alpha] + 16.33 \sin[\alpha]^2 + D_{cyl})](1 - \operatorname{Tanh}[0.37 (-4.13 + D_{cyl})]))$ 

## The critical cylinder mass to critical sphere mass highlights regions needing exploration

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

A critical length model allows flexibility to adapting to environment modeling

### Average length of critical cylinder to critical sphere diameter highlights other areas

![](_page_10_Figure_2.jpeg)

### The critical length model has been adapted for oblique impacts with an angle of attack

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

 $L_{Cyl}[D_{Cyl}, \alpha, \theta] = \cos[\sqrt{\alpha \theta}]^{0.5} (0.50 \cos[\alpha]^2 + 3.04 (1 - Tanh[0.37 (D_{Cyl} - 4.13 \sec[\theta]^{1.15})])$ Coth[0.51 Cos[ $\theta$ ]<sup>1.21</sup> (D<sub>Cyl</sub>-Cos[ $\theta$ ]<sup>6.22</sup> (-9.26+26.8 Sin[ $\alpha$ ]-16.3 Sin[ $\alpha$ ]<sup>2</sup>)-4.27 Sin[ $\sqrt{\alpha \theta}$ ]<sup>3.42</sup>)])

### The critical cylinder mass to critical sphere mass with obliquity included

![](_page_12_Figure_2.jpeg)

 $\mathsf{Coth}[0.51 \ \mathsf{Cos}[\theta]^{1.21} \ (\mathsf{D}_{\mathsf{Cyl}} - \mathsf{Cos}[\theta]^{6.22} \ (-9.26 + 26.8 \ \mathsf{Sin}[\alpha] - 16.3 \ \mathsf{Sin}[\alpha]^2) - 4.27 \ \mathsf{Sin}[\sqrt{\alpha \ \theta} \ ]^{3.42})])$ 

#### Orbital Debris Fragment Shape Study Forward Work

![](_page_13_Picture_2.jpeg)

#### • Task Plan

- Assess ballistic limits for cylindrical rod-like and plate-like projectiles impacting thermal protection system (TPS) materials, shielding and spacecraft structures using <u>hydrocode simulations</u> and <u>hypervelocity</u> <u>impact test</u> results
  - Target types/failure criteria:
    - 1. General and specific single-wall materials (metals and thermal protection materials)
    - 2. General and specific multi-wall shields (Whipple shield, stuffed Whipple shield, etc)
  - Assess projectile density effects: low-density (graphite-epoxy), medium density (aluminum) and high-density (steel)
  - Assess impact velocity effects
  - Assess projectile orientation effects
  - Assess impact obliquity effects
- Together impact tests and numerical simulations will be used to develop ballistic limit equations for shaped projectiles into a variety of shields.