The Weather Analysis Display (WAND) Tool

John M. Orcutt 1 Patrick White 2

Spring 2019 Natural Environments Day-of-Launch Working Group Kennedy Space Center April 24, 2019

¹ Jacobs Space Exploration Group / Marshall Space Flight Center Natural Environments Branch ² NASA / Marshall Space Flight Center Natural Environments Branch

john.m.orcutt@nasa.gov

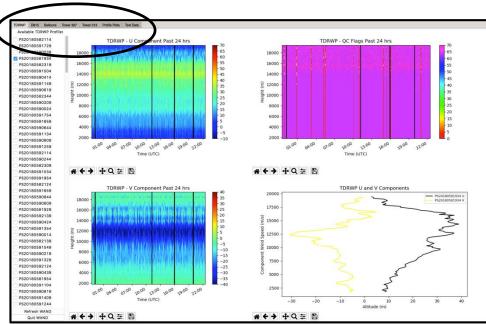
www.jacobs.com | worldwide

Background

- Atmospheric environments are an important element in day-of-launch (DOL) operations of space launch vehicles.
- NASA Marshall Space Flight Center Natural Environments Branch provides multiple functions supporting DOL operations for Space Launch System (SLS) missions.
 - Generates a vertically complete profile for trajectory and load calculations using the Profile Envision and Splicing Tool (Orcutt et al.; 2017)
 - Monitors atmospheric conditions for situational awareness

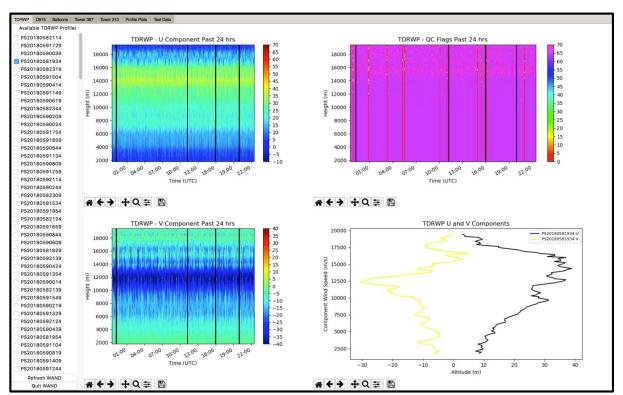
Weather Analysis Display (WAND) Introduction

- The USAF's Eastern Range contains of a highly dense network of weather instrumentation.
 - A network of weather towers
 - Weather balloons
 - A network of Doppler Radar Wind Profiling (DRWP) systems
 - Tropospheric DRWP at ~48-MHz
 - Boundary Layer Profilers at 915-MHz
- WAND was developed by MSFC NE to provide MSFC NE SLS DOL operators situational awareness capability by presenting data in a multitude of ways.
 - Observations
 - Climatology
- Designed to operate within the "highly secured" environment at the Huntsville Operations Support Center.
 - WAND was coded using Python 3
 - Has few dependencies
 - Numpy array handling
 - Scipy mathematical functions
 - Matplotlib data visualization
 - Tkinter create and execute the Graphical User Interface (GUI)

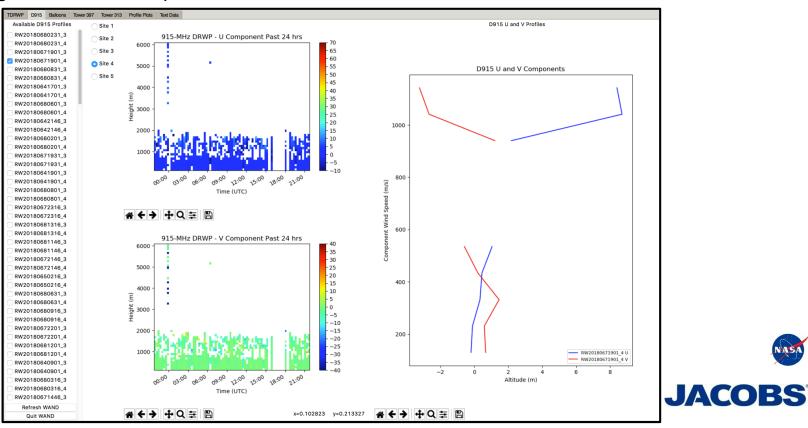


	WAND Search	
Pleas	se enter the Input and Output Directories.	
		Get Input Directory
		Get Splice Directory
		Get Output Directory
Angle for In-Plan	ne & Out-of-Plane Component Calculation	
90		
Search		

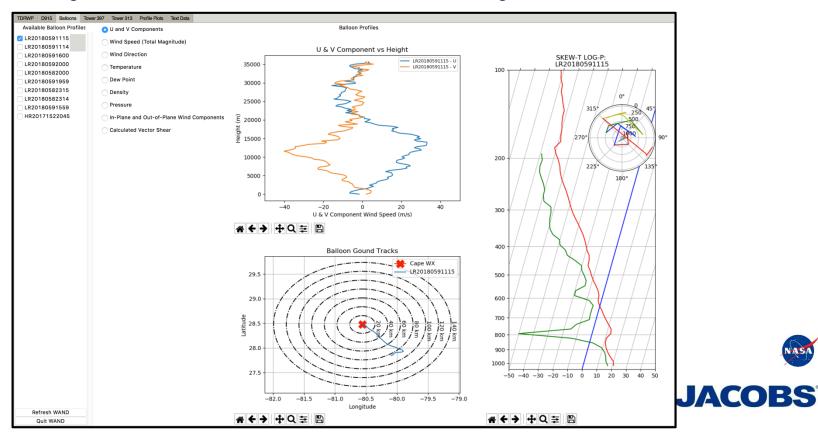
- This window is the initial window that appears when WAND is started.
- Allows the operator to select the desired input and output directories as well as set the desired angle for in-plane and out-of-plane wind component calculations.
- Clicking the "Search" button once all directories are supplied will get WAND to search for any data from the past 24 hours.



- WAND uses tabs to control which system is being displayed.
 - Tropospheric DRWP (TDRWP)
 - 915-MHz DRWP (D915)
 - Balloons
 - Tower 397 (located at the launch pad)
 - Tower 313 (located approximately 5 km from the launch pad)
 - Profile Plots
 - Text Data



- WAND opens to the TDRWP tab.
- The TDRWP tab contains time-height cross-sections of the U and V wind components, the TDRWP's QC flags, and profile plots of U and V.

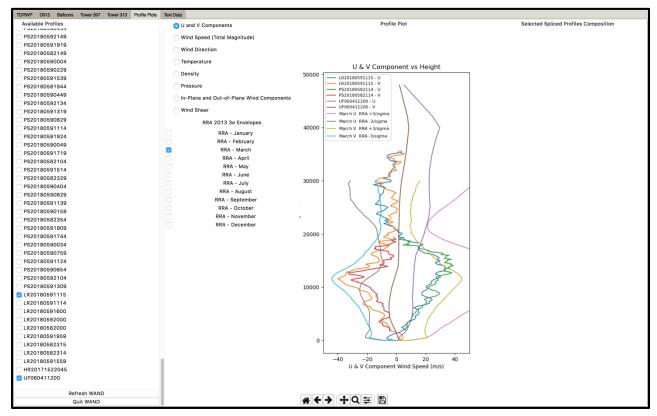


 The D915 tab is nearly identical to the TDRWP tab, but does not have a QC flag timeheight cross-section plot.

• The Balloons tab displays the vertical profile of all variables reported by the balloon systems, ground tracks of the balloons, and Skew-T Log-P.

• The Tower 397 tab displays a time series of any variable that is measured by the towers, a table of the current conditions from all sensors, and a table of time series of the past 10 minutes of data from the up-wind tower (Orcutt et al., 2016).

• The Tower 313 tab is identical in layout to the Tower 397 tab.


Refresh WAND

Quit WAND

☆ ← → ⊕ Q 幸 🖹

11

 The Profile Plots tab displays vertical profiles of any measurement from all of the DRWPs, balloons, Profile Envision and Splicing Tool (PRESTO) spliced profiles, upper level profiles, and statistical envelopes.

• The Text Data tab displays the selected data file as text.

TDRWP D915 Balloons Tower 397 Tower 313 Profile Plots	Text Data
Available Profiles	P\$078582115
PS20180582114	TEST NBR 02018 PROFILE DATA
PS20180591729	KENNEDY SPACE CENTER, FL.
PS20180590039	2114Z 27 FEB 18
PS20180581934	ALT DIR SPD SHR WW S1 S2 S3 N1 N2 N3 WID1 WID2 WID3 G G QC
PS20180582319	GEOM DEG M/S /SEC M/S DB DB DB DB DB N/S M/S 1 2 NN
PS20180591504	
PS20180590414	1795 303 7.7 .000 -0.09118.9117.0118.0 57.9 58.3 58.1 0.7 0.5 0.62 0 0 64
PS20180591149	
PS20180590619	1944 308 7.9 .004 -0.05116.2117.1116.6 57.8 58.2 58.0 0.8 0.5 0.65 0 0 64
PS20180582344	2093 306 7.6 .002 -0.11120.6122.4121.6 57.4 57.7 57.6 0.6 0.5 0.56 0 0 64
PS20180590209	2243 305 8.1 .004 -0.09123.8121.9123.0 57.9 58.3 58.1 0.8 0.5 0.64 0 0 64
PS20180590024	2392 307 8.3 .003 -0.06119.6122.6121.4 58.7 59.1 58.9 0.6 0.5 0.53 0 0 64
PS20180591754	
PS20180591859 PS20180590644	2542 310 9.9 .011 -0.08114.2115.8115.1 59.2 59.4 59.3 0.4 0.5 0.46 0 0 64
PS20180590044	2691 317 11.6 .015 -0.15102.8103.5103.2 59.9 60.2 60.1 0.6 0.7 0.66 0 0 64
PS20180591154	2841 323 11.7 .008 -0.14106.3106.2106.3 60.1 60.2 60.2 0.6 0.7 0.65 0 0 64
PS20180591259	2990 325 11.4 .004 -0.13103.7104.7104.3 60.1 60.2 60.2 0.7 0.6 0.65 0 0 64
PS20180592114	
PS20180590244	3140 322 11.6 .003 -0.11100.5100.4100.5 60.1 60.2 60.2 1.1 0.6 0.87 0 0 64
PS20180582309	3289 325 12.2 .005 -0.01 98.8100.0 99.4 60.0 60.1 60.1 1.0 0.8 0.88 0 0 64
PS20180591534	3439 324 14.3 .014 0.01111.6113.2112.5 60.1 60.2 60.2 0.5 0.6 0.56 0 0 64
PS20180591954	3588 323 14.7 .003 0.04114.0115.1114.6 60.1 60.3 60.2 0.5 0.6 0.56 0 0 64
PS20180582124	
PS20180591659	3737 320 14.1 .006 -0.02110.0108.1109.2 60.1 60.3 60.2 0.5 0.8 0.66 0 0 64
PS20180590844	3887 313 13.9 .011 -0.04112.1110.6111.4 60.1 60.2 60.1 0.5 0.7 0.58 0 0 64
PS20180590609 PS20180581929	4036 309 13.3 .008 -0.05109.5109.2109.4 60.1 60.2 60.1 0.6 0.7 0.63 0 0 64
PS20180592139	4186 302 12.4 .011 -0.04107.2108.7108.0 60.0 60.1 60.1 0.6 0.5 0.55 0 0 64
P\$20180590424	40 0 0 0.0 1.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.
PS20180591354	4335 295 11.5 .012 -0.01110.0108.7109.4 60.1 60.2 60.1 0.5 0.52 0 0 64
PS20180590014	4485 292 11.9 .005 -0.05109.9109.3109.6 60.0 60.2 60.1 0.5 0.4 0.45 0 0 64
PS20180582139	4634 293 12.6 .004 -0.09106.8105.2106.1 60.1 60.1 60.1 0.5 0.4 0.43 0 0 64
PS20180591549	4784 292 12.1.084 -0.12111.7189.4118.7 60.0 60.1 60.1 0.6 0.4 0.46 0 0 64
PS20180590219	
PS20180591329	4933 292 12.1 .000 -0.13110.7111.9111.3 60.1 60.1 60.1 0.6 0.3 0.49 0 0 64
PS20180592124	5083 292 13.1 .007 -0.10102.5103.0102.7 60.0 60.1 60.1 0.8 0.5 0.65 0 0 64
PS20180590439	5232 291 14.3 .008 -0.07106.8106.7106.7 60.1 60.1 60.1 0.6 0.6 0.6 0.6 0 0 64
PS20180581954	
PS20180591104 PS20180590819	5381 295 14.7 .007 -0.04108.8109.2109.0 60.0 60.1 60.1 0.5 0.7 0.61 0 0 64
PS20180590819	5531 300 15.8 .012 -0.04107.0106.0106.5 60.0 60.0 60.0 0.6 0.6 0.6 0.6 0.6 0.6
PS20180591244	5680 301 16.4 .004 -0.11104.2100.8102.8 60.0 60.1 60.1 0.5 0.6 0.58 0 0 64
Refresh WAND	5830 300 16.9 .004 -0.09 99.3 97.7 98.5 60.0 60.1 60.0 0.6 0.6 0.6 0.62 0 0 64
Quit WAND	

Summary

- MSFC NE developed a tool, WAND, using Python to provide DOL personnel with displays of the meteorological conditions at and around the launch site for situational awareness.
- WAND can display data from all systems at Kennedy Space Center and Cape Canaveral Air Force Station, as well as upper level wind forecasts and statistical envelopes.
- Forward work
 - Finish Formal Acceptance Testing

References

- Orcutt, J. M., J.C. Brenton. (2016) The Quality Control Algorithms Used in the Process of Creating the NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database. Fifth Aviation, Range, and Aerospace Meteorology Special Symposium. New Orleans, LA, Amer. Meteor. Soc. P828.
- Orcutt, J. M., R.E. Barbré, J.C. Brenton, R.K. Decker. (2017) The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python. Seventh Symposium on Advances in Modeling and Analysis Using Python. Seattle, WA, Amer. Meteor. Soc.

Questions?