

Code TS Entry Systems and Technology Division

presented by

Robin Beck robin.a.beck@nasa.gov

December 8, 2018

TS Division Overview

- The TS division (Entry Systems and Technology Division) includes people who:
 - Help design spacecraft for different exploration missions
 - Figure out how hot the environments around a spacecraft will get
 - Invent new materials that can protect the spacecraft
 - Figure out how those materials will behave on a spacecraft and how thick they need to be
 - Plan and perform tests on those materials and spacecraft designs to prove they will fly successfully
 - Instrument vehicles in order to get flight data on the materials
 - Build and launch demonstration vehicles!

Spacecraft Design

- TS has been developing new, unique spacecraft designs
 - ADEPT Adaptable Deployable Entry and Placement Technology heatshield to allow large heatshields to fit on standard launch systems

Deployed

 Drag Modulated Aerocapture Vehicle – to allow placement of small vehicles into planetary orbit without carrying a lot of fuel to slow it down

 The TS Division wrote two computer programs that won "Software of the Year" awards: DPLR and NEQAIR that, together, tell us how high the heating on the spacecraft will be

TS Materials Development

 TS developed the "Invention of the Year" material, Phenolic Impregnated Carbon Ablator (PICA) that flew on Stardust and MSL

- TS has also extended this technology to a conformal, less brittle version, C-PICA
- TS has developed a new material (HEEET) to survive extreme (very high heating) entry environments based on a 3-D woven substrate

Heatshield Design

 TS takes the heating information and the material properties and calculates the thicknesses required to survive the planetary entry

TS Testing – 1

 The Hypervelocity Free Flight Aerodynamic Facility (HFFAF) uses model-launching guns to accelerate smallscale models of various size, shape and material composition to velocities in excess of 8 km/sec (>17,800 miles per hour!!!!)

Testing the Drag Modulated Aerocapture Vehicle

TS Testing – 2

- Ames Electric Arc Shock Tube (EAST) Facility is the only shock tube in the U.S. capable of simulating shock-heated gas environments with velocities up to 46 km/s (>100,000 mph)
- We use the data to help calculate the radiant heating on planetary entry vehicles

TS Testing – 3

- NASA Ames Arc Jet Testing Complex contains 4 different arc jet test bays with 4 different arc jet configurations
 - An arc jet is a device in which gases are heated and expanded to very high temperatures and supersonic/hypersonic speeds by a continuous electrical arc between two sets of electrodes
- The Ames Arc Jet Complex has a rich heritage of over 55 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder, MER heatshield, Stardust, NASP, X-33, X-34, SHARP-B1 and B2, X-37 WLE TPS, Orion heatshield development and MSL TPS
- The arc jets are used for the three major areas of TPS development: selection, validation and qualification

TS Flight Vehicle Instrumentation

- TS has been "instrumental" in designing instrumentation on flight vehicles
 - MSL Entry Descent and Landing Instrumentation (MEDLI)
 - Orion Entry Flight Test #1 (EFT-1) Development Flight Instrumentation
 - Mars 2020 Entry Descent and Landing Instrumentation (MEDLI-2)

TS Launches the ADEPT Vehicle

• In September 2018, launched a small ADEPT demonstration vehicle

Conclusions

• Wow, TS does a lot of things!!!!

Questions?

National Aeronautics and Space Administration

Ames Research Center Entry Systems and Technology Division