

Characterizing Early Damage Evolution in CMCs

Bhavana Swaminathan¹

A. Almansour², J. D. Kiser², K. Sevener³, T. Pollock¹, S. Daly⁴

1. University of California, Santa Barbara, Materials Department

- 2. NASA Glenn Research Center
- 3. University of Michigan, Department of Materials Science & Engineering
- 4. University of California, Santa Barbara, Department of Mechanical Engineering

43rd International Conference and Exposition on Advanced Ceramics (ICAAC 2019) January 27 - February 1, 2019 | Daytona Beach, FL

Research Supported by NASA Space Technology Research Fellowship (NSTRF)

Local Composite Landscape and Microstructural Interactions Influence CMC Damage Behavior

GOAL: To correlate the initiation, evolution, and relative activity of surface and subsurface damage mechanisms to constituent landscape in SiC/SiC CMCs

Corman and Luthra, Handbook of Ceramic Composites (2005).

Tracy, Daly, and Sevener (2015).

SiC/SiC Minicomposites are Well-Suited for Studying Damage Initiation and Evolution

Specimen ID	BN Thickness (μm)	ρ _f	% porosity	ρ _{cvi}	Fiber Volume fraction (%)	BN Volume Fraction (%)	Matrix Volume Fraction (%)	Area (mm²)
1-1	3	3.2	-	3.2	33.914	27.68	38.406	0.167
2-1	0.4	3.2	10-15	3.2	21.208	2.92	75.87	0.267

A Multi-Modal Approach for Damage Characterization in SiC/SiC Minicomposites

Acoustic Activity Initiates below PL in Tensile Tests

AE Correlates with Crack Formation below PL

AE Show Single Crack Information and Directionality of Local Crack Networks

Incremental Loading Used to Capture Damage Progression in Minicomposites

Improved Alignment Scheme to Correlate Damage Mechanisms with Local AE Activity

 $Location = \frac{x}{2} \cdot \left[\frac{\Delta t}{\Delta t_x}\right]$

x = sensor separation Δt = arrival time difference Δt_x = difference in arrival times from events outside of the gage

Fiber Content Drives Variation in Crack Opening Displacements (CODs) Between Batches

Local interfacial changes may be responsible for variations from predicted parabolic relationship of stress and crack opening displacements (COD)

500 μm

Microstructural Interactions and Local Stresses Drive Variations in Crack Spacing

Global AE Activity Shows Prediction of Failure Region in Advance of Failure State

In-SEM Crack Density Evolution (CDE) Validates AE-Predicted Evolution

Differences in Fiber Pullout Indicate Relative Activation of Toughening Phenomena

Limited fiber pullout

Extensive fiber pullout

The convergence of research and innovation.

Acknowledgements

Collaborators at UCSB

Daly Group Dr. Zhe Chen Mr. Ben Callaway

Mr. Kirk Fields

Mr. Mark Cornish

Mr. Chris Torbet

Collaborators at GRC

Mr. Pete Bonacuse

Dr. Wayne Jennings

Dr. Craig Smith

Dr. Richard Rauser

Mr. Aaron Thompson

We gratefully acknowledge funding provided by the **NASA Space Technology Research Fellowship Program**

Future efforts

Goal: To quantitatively characterize the interactions between constituent landscape and the early accumulation and evolution of surface/sub-surface damage in CMCs.

Results will yield insights on the relationships between temperature, environment, stress, and damage