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Local Composite Landscape and Microstructural Interactions Influence CMC Damage Behavior
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Corman and Luthra, Handbook of Ceramic Composites (2005). Tracy, Daly, and Sevener (2015). 
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I. Matrix cracking

II. Crack deflection 
and fiber bridging

III. Fiber failure
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Hypothesis: Locally averaged structural features are significant drivers in the 
manner in which subsurface and surface damage accumulates and propagates, 
and in the interactions between damage mechanisms. 

GOAL: To correlate the initiation, evolution, and relative activity of surface and 

subsurface damage mechanisms to constituent landscape in SiC/SiC CMCs



(Courtesy of Richard Rauser at NASA GRC)

Developed by Rolls Royce High 
Temperature Composites

SiC/SiC Minicomposites are Well-Suited for Studying Damage Initiation and Evolution
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Specimen ID
BN Thickness 

(µm) 
ρf
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porosity
ρCVI

Fiber Volume 

fraction (%)

BN Volume 

Fraction (%)

Matrix Volume 

Fraction (%)

Area 

(mm2)

1-1 3 3.2 - 3.2 33.914 27.68 38.406 0.167

2-1 0.4 3.2 10-15 3.2 21.208 2.92 75.87 0.267

Batch 1 Batch 2HFC LFC



A Multi-Modal Approach for Damage Characterization in SiC/SiC Minicomposites
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Mechanical testing in-SEM

200 um

Acoustic Emission (AE)

25 mm

10 mm



Acoustic Activity Initiates below PL in Tensile Tests
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AE Correlates with Crack Formation below PL
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Stress-Dependent Acoustic Activity in LFC and HFC Minicomposites

• Early damage is dependent on the 
population of flaws

• Early cracking did not affect global 
linear-elastic response

• AE can detect early damage formation 

• A robust alignment method is needed to 
correlate AE with damage 



AE Show Single Crack Information and Directionality of Local Crack Networks
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Unseen events may be 
subsurface or backside
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Incremental Loading Used to Capture Damage Progression in Minicomposites
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Improved Alignment Scheme to Correlate Damage Mechanisms with Local AE Activity
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x = sensor separation
Δt = arrival time difference

Δtx = difference in arrival times 
from events outside of the gage

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑥
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Fiber Content Drives Variation in Crack Opening Displacements (CODs) Between Batches
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High fiber content Low fiber content

Local interfacial changes may be responsible for variations from predicted parabolic 
relationship of stress and crack opening displacements (COD)



Microstructural Interactions and Local Stresses Drive Variations in Crack Spacing
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Variations in matrix pathway relative to loading direction,
porosity, interfacial properties, interactions of cracks with
fiber surfaces, subsurface differences in crack morphology

Low fiber contentHigh fiber content
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Global AE Activity Shows Prediction of Failure Region in Advance of Failure State

• Early stage, observable damage 
correlated with early AE

• Once formed, some cracks generate 
little activity (away from failure 
plane)

• Consistent AE observed at cracks 
near failure plane

Low fiber content
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In-SEM Crack Density Evolution (CDE) Validates AE-Predicted Evolution

𝐶𝐷𝐸 𝑁 = CDrupture ∙
ሻCumulative AE(N

Cumulative AE at crack saturation
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Batch 1: Higher Fiber Content

Batch 2: Lower Fiber Content

• Agreement at early stresses shows 
transverse cracking

• Variations in real and predicted 
response[s] due to other phenomena 
detected by AE

• Toughening mechanisms in lower fiber 
content (debonding, sliding, etc.) 

• Agreement at early and intermediate 
stresses shows transverse matrix 
cracking dominance



Differences in Fiber Pullout Indicate Relative Activation of Toughening Phenomena
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500 µm400 µm

High fiber content Low fiber 
content

Limited fiber pullout Extensive fiber pullout
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Future efforts

Results will yield insights on the relationships between temperature, environment, stress, 
and damage

Modeling the 
mechanical response 

of CMCs

Characterization of 
damage at laminate 

length-scale 

Characterization of 
damage under 

thermo-mechanical 
/ environmental 

conditions

Statistical framework to 
interpret extremely large 

data sets

Goal: To quantitatively characterize the interactions between constituent landscape and 

the early accumulation and evolution of surface/sub-surface damage in CMCs.

Characterization of CVI SiC/SiC 
minicomposites

Interpreting signal-specific AE 
features associated with damage 

modes


