

Slow crack growth of boron nitrides for electric propulsion components

J. Salem , J. Mackey, and H. Kamhawi, NASA Glenn Research Center, Cleveland, Ohio

43nd International Conference and Expo on Advanced Ceramics and Composites

Outline

- Background
- Materials and properties of interest
- Past work
 - Chemistry, microstructure, texture, moisture absorption
 - Strength, modulus, CTE, conductivity
- Slow crack growth
 - procedure
 - failure sources
- Fracture toughness

Background

- Electric propulsion systems subject components to harsh environments including:
 - High temperature plasma (600°C)
 - low temperature (-200°C), vacuum, and backsputtered deposition.
- Both Hall and ion thrusters require ceramics:
 - electrical isolation
 - thermal management
 - structural performance.
- Ceramic components range in size from <1/4" to >10".
- Historically, material selection has primarily been determined from cost, secondary electron emission yield, and sputtering yield.
 - Hot pressed hexagonal boron nitride

Materials of Interest

- The grades commercial hexagonal boron nitride being considered were selected from historical usage and/or geometric considerations.
- Similar costs w/exception of Tokuyama
- Several grades contain significant silica:

Grade Name*	Vendor*	Description	Relative Cost**
HP	Saint-Gobain	BN CaF ₂ Binder, Hot Pressed	1.0
M26	Saint-Gobain	BN/SiO ₂ Composite, Hot Pressed	1.1
Μ	Saint-Gobain	BN/SiO ₂ Composite, Hot Pressed	1.0
BN-XX	Kennametal	BN/SiO ₂ /ZrO ₂ Composite, Hot Pressed	1.0
Hi-M	Tokuyama	AIN/BN Composite, Hot Pressed	4.6

* Trade names and vendors are used for identification purposes only.

** Cost based on recent quotes for similar size lots of material, normalized to the cost of HP.

Factors of Interest

- Primary factors of interest: •
 - dielectric properties
 - thermal properties and stability
 - mechanical properties —
 - moisture sensitivity
 - secondary electron emission yield
 - erosion resistance in a plasma environment
- Secondary factors of interest:
 - Microstructure, crystal structure, details of processing, and mass spectroscopy.
- Additional factors to consider:
 - Hot press anisotropy, lot-to-lot and variability, billet uniformity/property variability, storage/handling concerns, and machining concerns.
- Beyond materials characterization work: •
- Component fabrication, component testing.

Property Measurements

- Building dataset to compare grades:
 - Collecting data from 25 to 900°C .

 Collecting data on samples with orientation "Parallel ∥" or "Perpendicular ⊥" to the hot press direction.

> NASA/TM—2018-219949 "Evaluation of Boron Nitride Materials for Hall Thruster Discharge Channels" *Jonathan A. Mackey, Jonathan A. Salem, and Hani Kamhawi.....*

National Aeronautics and Space Administration

Property	Method	HP ∥ / ⊥	M26 ∥ / ⊥	BN-XX ∥ / ⊥	M ∥ / ⊥
XRD BN Phase (wt%)	Rietveld-refinement	98	<mark>70</mark>	56	45
Porosity (%)	ASTM C830	<14	<4.7	<2.4	<3.0
CTE (µm/m-K)	Dilatometry	3.1 / 0.4	2.9 / 0.5	N/A	0.5 / 0.6
Dielectric Constant	Impedance Spectroscopy	4.7 / 4.6	4.6 / 4.7	4.1	4.0 / 4.2
Thermal Conductivity (W/m-K)	ASTM E1461	33 / 31	22 / 28	6	9 / 12
Elastic Modulus (GPa)	ASTM C1259	80 / 79	55 / 47	N/A	16 / 61

* All data collected at NASA GRC or California Institute of Technology

- Properties are quite different! Function of orientation.
- HP exhibits the largest values in all categories!

Microstructure Overview

- Very different microstructure.
- Texture is not clearly apparent in SEM microstructure.
- Porosity is apparent in HP grade, less in other grades.
- Large silica content is a concern for crack growth.

Powder XRD Rietveld Refinement (wt%)

*Amorphous content is likely SiO₂, confirmed with EDS.

National Aeronautics and Space Administration

Another Interesting Issue: Moisture Absorption

- Samples were subjected to one of three moisture levels for >20 days while mass change was tracked:
 - Drying Oven,100C, <5% rel.
 humidity.
 - Environmental Chamber, 50C, 90% rel. humidity.
 - Submerged Water Bath, 25C, 100% rel. humidity.
 - Each hot press orientation was investigated on high aspect ratio samples.

Drying Oven 100C, <5% rel. humidity, 50 days

Submerged in Water 25C, 100% rel. humidity, 90 days

Moisture Absorption (cont.)

- Mass change tracks with open pore porosity (high, medium, low).
- HP hot press orientation has influence on the transfer of moisture (high, low).
- HP samples produced a CaB₆O₉(OH)₂(H₂O)₃ salt on the surface of the submerged samples.

Moisture Sensitivity on Strength

- Samples from moisture absorption study were tested for flexural strength and elastic modulus after soak.
- HP ||, HP ⊥, and M ||, all have significant changes in strength and elastic modulus properties with moisture exposure (P<0.05).

	<5% Rel. Humidity	~60% Rel. Humidity	90% Rel. Humidity	
Sample	Dry Oven Strength (MPa)	As-machined Strength (MPa)	90% Chamber Strength (MPa)	P-Value [Oven>Chamber]
HPI	52.1	42.5	27.5	0.000005
HP ⊥	80.1	76.1	69.7	0.005
M26	59.9	61.8	57.9	0.3
M26 ⊥	43.2	49.6	39.7	0.2
MI	23.9	24.7	22.3	0.01
M⊥	60.1	62.4	59.2	0.3

Slow Crack Growth (SCG)

- Ceramics and glass exhibit loss of strength over time under static loads. The phenomenon is know as slow crack growth or "static fatigue" and is a form of stress corrosion.
- No data is the literature on BN.
- We need to know the SCG parameters for BN to see if stress corrosion should be a design consideration.

• Usual model:
$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

Sensitivity Parameter n < 20 high sensitivity (glasses) < 40 intermediate (alumina's) > 50 low (Si₃N₄) > 100 ~ insensitive (Ge, Si, α SiC)

- v crack velocity
- σ is Stress
- n & A are SCG parameters
- K_{lc} is Fracture toughness

Rapid Technique for SCG Parameters

- Constant Stress Rate Testing (Dynamic fatigue):
 - well defined time-to-failure
 - can be rapid
 - simple
- Strength based approach with advantages & disadvantages:
 - samples the inherent, small flaws (length scale)
 - statistical scatter (many specimens needed)
 - averaging of fatigue regions
 - shorter time scale than application

Experimental Procedure

NASA

- Constant Stress Rate Tests (200 to 0.002 MPa/s)
- Uniaxial Flexure (4-point)
- Air : 60% RH
- As-machined surfaces
- 60 tests per condition

SCG FORMULATIONS

15

SCG Analysis

Crack growth Function:

$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

Constant Stress Rate Testing:

$$\sigma_f = \left[B(n+1)\sigma_i^{n-2}\dot{\sigma}\right]^{l/(n+1)}$$

Log Stress Rate, $\dot{\sigma}$

□ Parameter extraction via regression:

$$log_{10} \sigma_{f} = \frac{1}{n+1} log_{10} \dot{\sigma} + log_{10} D \qquad log_{10} D = \frac{1}{n+1} log_{10} [B(n+1)\sigma_{i}^{n-2}]$$
(Slope α) (Intercept β)

16

Results for HP BN Perpendicular

- SCG parameter $n = -72 \pm 27$
- Resistant to SCG.

Results for HP BN Parallel

- SCG parameter *n* >100 is very high.
- Very resistant to SCG.platelets corossion.

HP Failure Source: Ca rich agglomerates

National Aeronautics and Space Administration

Results for M26 BN Parallel

- SCG parameter $n = 55 \pm 5$ is lower (more silica).
- Fairly resistant to SCG.

Crack Velocity Curves

- M26 is the most sensitive to SCG: low *n* and low $K_{lc.}$
- Crack growth in HP perp starts around the K_{lc} of M26 and HP parallel.

National Aeronautics and Space Administration

Crack Velocity Curve

Material	n	Silica Content wt. %
HP Perp	72 ± 27	0
HP Para	>100	0
M26 Perp	58 ± 11	32
M26 Para	?	32

SCG correlates with silica content.....

- Bonds in HP between platelets are insensitive to water......
- SCG mechanism across platelets may be ionic dissociation of bonds within platelets.

Crack Velocity Curve

Glasses readily exhibit SCG and thus are a good comparison.

Material Silica n Content wt. % 72 ± 27 0 >100 0 58 ± 11 32 M26 Perp 20 73 Fused SiO₂ 40 100

 As compared to glass, M26 and HP parallel are less sensitive to changes in K_I, but lower K_{Ic}.

Fracture Toughness

- Three standard methods are available.
- Indentation caused crushing w/o cracking.
- Used the chevron notch.

device.

Fracture Toughness

Material	K (60%)	K _{Ivb} (N ₂)	Other	Κ _{Ivb}
		MPavm	Material	
HP Perp		0.97 ± 0.07	Glass	0.78
HP Para		0.69 ± 0.08	Silca	0.75
M26 Perp		0.67 ± 0.05	SiC	2.8
M26 Para		?	Alumina	4

hexagonal BN platelet orientation

• Similar to glass. Easier to separate than split the platelets.

Summary

- BN's exhibits limited slow crack growth in humidity. Testing continues.
- SCG parameters correlate with silica content (?).
- Slow crack growth parameter are a function of test orientation due crystallographic texture & bond type.
- Bonds between platelet are not sensitive to water.
- Bonds within platelets are sensitive to water.
- Fracture toughness is low, around that of glass, and is a function of orientation.
- It is easier to drive a crack between hexagonal BN platelets than across platelets (weak bonds between platelets).

Summary

- Continuing work:
 - Lot-to-lot variability, fracture toughness, slow crack growth, compression strength, and secondary electron yield.

Acknowledgements

- Funding provided by NASA Space Technology Mission Directorate.
- Technical assistance provided by NASA Glenn Research Center.

