
National Aeronautics and Space Administration

Tutorial : 

An Overview of the Orbital Debris 

Environment

Mark Matney, Ph.D.

Orbital Debris Program Office

NASA Johnson Space Center



National Aeronautics and Space Administration

2

Space Debris

• Space debris = any man-made object in space that no longer serves a useful purpose

– Note there are also natural debris – meteoroids

• Intact objects, > 1 m

– Old rocket bodies and spacecraft

– “Operational” debris – shrouds, mounts, lens caps, etc

• Fragmentation debris, 1 mm – 1 m 

– Deliberate or accidental explosions from on-board energy sources

• Unvented rocket fuel

• Active batteries

• Self-destruct mechanisms

– Deliberate or accidental collisions

• Weapons tests

• Random collisions

– Solid rocket motor slag

• Small debris, < 1 mm

– Deterioration of satellite surfaces in space environment

• Small debris impact ejecta

• Deterioration of paint and other materials
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Brewster Rockit on Debris Sources
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Space Surveillance Network (SSN)

• Almost all of our operational knowledge of the space environment is 

from the U.S. Department of Defense’s (DoD) Space Surveillance 

Network (SSN) and its parallels in other countries

– New launches

• Payloads

• Rocket Bodies

• Operational Debris (brackets, shrouds, etc.)

– Breakup events

• Anomalous breakups

• Explosions – both accidental and deliberate

• Collisions between tracked objects

• It is through the SSN Catalog that we know the various orbits where 

humans have launched their satellites and how they have evolved over 

time
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Space Surveillance Network
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SSN Catalogue Orbital Environment
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Evolution of the Catalogued (>10 cm) Satellite 

Population by Number
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CSpOC

• The Combined Space Operations Center (CSpOC) is tasked with using 

the measurement data of the SSN to maintain a Catalog of space objects

– Catalog consists of objects large enough to be detected by sensors 

of the SSN and observed often enough to determine their orbits with 

sufficient accuracy to recover the object on a future pass over an 

SSN sensor

– This tracking capability allows the CSpOC to perform conjunction 

assessment calculations for satellite users

– There is a sensitivity limit for the SSN sensors, generally given as 

>10 cm in low-Earth orbit (LEO), and losing sensitivity for deep 

space objects

– However, we know there are many debris smaller than 10 cm in size 

that cannot be tracked
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Future Space Fence
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Collision Avoidance

• The current statistical technique used by CSpOC was 

developed as a joint project by the DoD and NASA originally to 

ensure the safety of Shuttle and ISS astronauts

• Service now provided to any space user

– Possible conjunction warning given to registered user

– Contains the covariance matrix and encounter geometry for each 

object

• Covariance matrix gives uncertainty ellipsoid of the position of each 

object

• Information can be used to compute a probability of collision

• Conjunction assessment for NASA

– Human spaceflight handled by Mission Control in Houston and by 

their counterparts in Moscow 

– Robotic spacecraft handled by NASA’s Conjunction Assessment 

Risk Analysis (CARA) team at GSFC
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Collision Avoidance

• While Collision Avoidance is a prudent thing for a spacecraft 

operator to do, it is not a cure-all for space debris issues

• While a collision-avoidance maneuver reduces the collision 

risk, depending on the maneuver threshold chosen and the 

geometry of a conjunction, it does not mitigate 100% of the 

collision probability – a (sometimes substantial) residual risk 

remains 

• For every object tracked, there are tens to hundreds of objects 

we cannot track that can still cause serious damage to a 

spacecraft

• Vast majority of objects tracked (~95%) are inert and cannot 

maneuver

– By itself not a solution for problem of long-term collisional 

growth of the debris environment
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Complementary NASA and DoD MMOD Environment 

Efforts

Activity Lead Agency

Environment Definition (>10 cm) DoD

Environment Definition (<10 cm) NASA (ODPO)

Environment Definition (Meteoroids) NASA (MEO)

Risk Assessments (>10 cm) DoD

Risk Assessments (<10 cm) NASA

OD Mitigation Measures NASA

OD Environment Projection NASA
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Debris Sizes



National Aeronautics and Space Administration

14

NASA Orbital Debris Program

• NASA uses a number of assets to monitor the orbital debris 

environment <10 cm in order to characterize:

– Size distribution

– Orbit distributions (inclination, altitude, eccentricity)

– Possible sources

– Material types

– Shape

• NASA uses a statistical sampling technique - a sensor samples the 

environment over time in order to make statistical conclusions about the 

debris populations

– Determine how the debris are distributed in orbit

• Allows the ability to calculate the collision/damage risk to spacecraft

• Allows the spacecraft designers to build their spacecraft with better shielding or 

other techniques to minimize failure risk

– Identify new sources and prevent future debris-creating events

– Accurately assess the danger from known sources

– Assess how space activities might be degrading the debris environment

– Monitor for unforeseen new events invisible to the SSN
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Damage Potential
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NASA Measurements
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HUSIR/HAX Radars

• Located in Massachusetts – 42.6° latitude, operated by MIT Lincoln 

Laboratories

• Haystack Ultrawide Satellite Imaging Radar (HUSIR – previously known as 

Haystack)

– 36 m diameter

– 3 cm wavelength (X-band)

– Can detect debris > 5 mm in LEO

• Haystack Auxiliary Radar (HAX)

– 15 m diameter

– 1.8 cm wavelength (Ku-band)

– Can detect debris > 2 cm in LEO

• These radars accurately measure RCS, range, and Doppler velocity along line 

of sight, but have trouble with other velocity components, so they usually 

operate in an off-vertical mode (75° East), where Doppler velocity can be used 

to infer orbit inclination
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Discovery of RORSAT NaK
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Goldstone Radar

• Located in southern 

California – 35.4° latitude

• Part of NASA’s Deep Space 

Network

• Bistatic system
– 70 m dish + 34 m dish

– 3.5 cm wavelength (X-band)

– Can detect 2 mm – 5 mm debris 

in LEO

• Limited capability and time 

available

• Due to upgrade of sensors, 

we lost the 34 m dish close 

to the 70 m dish (in 

background)

• New longer-baseline 

configurations have much 

reduced altitude overlap
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Goldstone Data
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West Ford Needles

• The West Ford Needle project 

was a series of experiments from 

1961-1963 to launch hundreds of 

millions of tiny copper needles 

(1.78 cm long, thickness of a 

human hair) into short-lived polar 

orbits to test ability to bounce 

signals off the resulting “ring” 

around the Earth  

• Solar radiation pressure should 

have removed individual needles 

from orbit in a matter of weeks, 

but many stuck together in large 

mats that continue to orbit the 

Earth and are tracked by the SSN

• Goldstone data indicates there 

are also many tiny clumps of 

needles still in orbit
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Optical Telescopes

• Telescopes are the preferred method to observe 

small debris at Geosynchronous orbit (GEO) 

altitudes

• For more than a decade, NASA has used the 

Michigan Orbital Debris Survey Telescope 

(MODEST) to statistically monitor the GEO 

environment
– 0.61 m aperture Curtis Schmidt optical telescope

– Located in Chile, operated by University of Michigan

• Observations are conducted near the Earth’s 

shadow to maximize the reflected sunlight from 

debris
– Can detect objects down to about 30 cm in size

• Statistical survey is corrected for probability of 

detecting an object in a particular orbit
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Statistical Survey
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MCAT – Meter Class Autonomous Telescope

• NASA has recently deployed the Eugene 

Stansbery Meter-Class Autonomous 

Telescope (MCAT), a 1.3 m aperture 

Ritchey-Chretien reflecting telescope to 

Ascension Island (8.0° S), in the Atlantic 

Ocean near the Equator

• Has the ability to extend statistical surveys 

in GEO to smaller debris (~ 20 cm)

• Also has the capability to look for low-

altitude, low-inclination debris in LEO
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In Situ

• For sizes smaller than ~2-3 mm, we rely on returned spacecraft surfaces

• Small impactors leave a damage feature – a hole or crater

• Feature size is a function of
– Particle size

– Particle mass

– Particle shape

– Particle density

– Particle speed and angle of impact

– Characteristics of impacted surface

• The chief problem is that we do not typically know these things for each 

particle, all we have is the feature size and position

– Sometimes, electron microscope analysis of feature yields melted residue of 

impactor, letting us know the material of the particle (e.g., aluminum, steel, 

meteoroid).

• Use statistical techniques to “back out” debris characteristics



National Aeronautics and Space Administration

26

Sentinel-1A Impact 2016/08/23 – Onboard

Camera
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Debris Impacts Observed during EVA’s

• Also in 2007, a crew member on EVA noticed a hypervelocity impact 

crater while working near a large aluminum panel.

Space debris

impact site
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MMOD Damage to ISS

• MMOD impact damages observed to radiator panel during EVA-20 (Nov. 2012)

ISS033e017859 
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ISS032e020579

MMOD Damage to ISS
observed to Service Module during Russian EVA-31 (Aug. 2012)
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ISS032e020579
Close-up of SM radiator damage (1/4)
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Close-up of SM radiator damage (2/4)
ISS032e020579
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Close-up of SM radiator damage (3/4)
ISS032e020579
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Close-up of SM radiator damage (4/4)
ISS032e020579
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Recent ISS Radiator Imagery
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Recent ISS Radiator Imagery
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Shuttle In Situ Data

Facesheet

hole (dmax)

Facesheet hole 

(dmin)
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Material Types of Shuttle Window 

Impacts

Aluminum

Stainless Steel

Paint

Other
Orbital Debris

Meteoroids

Identified Impactors Types of Orbital Debris Impactors

• It is possible to put craters from space-exposed hardware into an 

electron microscope and identify the material of the impactor
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STS-115 MMOD Impact Damage

• The debris punched all the way through the radiator.  

• The face sheet hole was 2.8 mm in diameter.  

• The core inside the panel was completely destroyed for at least a 2.5 cm 

diameter below the face sheet damage.  

• This is the most significant MMOD damage recorded on the Orbiter 

radiators up to that time
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STS-115 MMOD Impact Damage

Outer face sheet damage

Entry hole, 0.108” diameter

FWD

Crack length, 0.267”

All measurements ± 0.005”

Hole, 0.031”

Inner face sheet damage
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Schematic of Radiator and Sketch of Damage

0.011” Facesheet

3/16” Cell 3.1 Pcf Al Core

0.5”

AFT Rad (Typ.)

26 Tubes/Pnl

15.1 ft x 10.5 ft/Pnl

4 Pnls/Veh

Bonded Al Strip 

(0.01” H x 0.4” W x 15’ L) 

0.005” Silver-Teflon Tape

F21 Tube

Entry hole, 0.108”

Hole, 0.031”

Crack, 0.267”
Core damaged across 

~ 5 cells (1” diameter 

x 0.5” deep)
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HST SM1 (STS-61, 1993)

WFPC2

radiator
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Visible MMOD Impact Damage on WFPC2 Radiator 

from the On-orbit Imagery Survey

S125e006995.jpg (edited)

• Red circles:  Impacts identified from SM3B images (2002)

• Blue circles:  Additional impacts identified from SM4 images (2009)
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Bay 5 MLI
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Bay 5 MLI
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HST Crater Data
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Future of In Situ

• The Shuttle no longer flies, so NASA currently has no dedicated sensor 

to monitor the small particle environment 

• The best way to measure small particles is by using a dedicated, 

calibrated sensor, designed to measure the impactor properties of most 

interest
– Size

– Shape

– Material Density

– Speed and Direction

– Time of Impact (combined with position of sensor, can be used to determine particle 

orbit)
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DRAGONS

• The Debris Resistive Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) 

is a new technology initiative to measure in situ debris

• The resistive grid on the first layer used to estimate the particle size

• Acoustic sensors at each layer to measure path and time-of-flight

• Backstop to record total energy

• Using velocity, energy, and size, should be able to estimate mass and 

material density

• Impact time to compute debris orbit
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Space Debris Sensor

• The technology had a flight technology 

demonstration on the Space Debris 

Sensor (SDS) aboard the ISS

• While some engineering data was 

obtained, the instrument suffered a fatal 

failure and is no longer operational
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Future DRAGONS

• We are currently awaiting flight opportunities of the 

DRAGONS technology, especially at higher orbit 

altitudes 

– Debris environment is predicted to be worse at altitudes 

between 700 and 1000 km altitude

– NASA and other spacecraft are spending money and 

resources to mitigate the predicted risk

– We have little to no data on these small particles – we are 

relying on models to extrapolate the risk from lower altitudes
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Ground Experiments

• Sometimes it is not enough to measure events in space, they need to be 

studied in the laboratory under controlled conditions

• There is a long history of studying collision or explosion debris on the 

ground by picking up the pieces afterwards
– Number of debris

– Size distribution

– Shapes

– Delta-velocities

• The primary source of data has been the Satellite Orbital debris 

Characterization Impact Test (SOCIT), which used an intact Transit 

satellite built in the 1960’s for the target of a hypervelocity impact test
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Ground Experiments

• However, there have been major changes in spacecraft construction 

materials over the years, so a need to test the breakup models using 

more modern spacecraft materials

• NASA, in conjunction with US DoD and the Aerospace Corporation, 

conducted the DebriSat impact experiment, using a mock satellite made 

of modern materials

– Included a test of a mock tank, designated DebrisLV
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DebriSat
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DebrisLV



National Aeronautics and Space Administration

56

DebriSat
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DebriSat

• The debris from the impacts have all been collected, and are being 

carefully analyzed by a team from the University of Florida

– Digital photos of each object

– Mass, 3D dimensions

– Material components identified

– Soft-catch material being x-rayed to ascertain particle velocities and particle 

shapes

• More debris were recovered than we anticipated based on previous  

models 

• Final dataset will be a detailed resource 

– Shape studies 

– RCS studies 

– Material distributions

– Size distributions
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ORDEM 3.1 

• An Engineering Model is a tool (primarily) for spacecraft designers and users to 

understand the long-term risks of debris collisions with their spacecraft

• NASA’s Orbital Debris Engineering Model ORDEM represents NASA’s best estimate 

of the current and near future orbital debris environment

– The environment is dynamic and must be updated periodically

– Populations based on empirical data as much as possible

• The ORDEM 3 series of models have significant new capabilities over previous 

ORDEM models

– Uncertainties

– Material density categories

– Model extended to GEO

– Can easily calculate flux for satellites in highly elliptical orbit

• ORDEM 3.1 is an update of the environment based on the latest data, but with 

minimal changes to the model structure

– Model completed and is undergoing review

– Should be available later in 2019
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Data Sources for ORDEM Models

Data Source Data 

Type

Size Limits ORDEM 3.0 ORDEM 3.1

STS Windows and 

Radiators

In situ 10 µm - 1 mm 1995-2011 1995-2011

HST WFPC-2 Radiator In situ 50 µm - 300 µm 1990-2009

HST Bay 5 MLI In situ 10 µm - 300 µm 1990-2009

HUSIR/Haystack Radar >5.5 mm 1999-2003, 

2007-2009

2013-2017

HAX Radar >1 cm 1999-2003, 

2007-2009

Goldstone Radar 2 mm - 8 mm 2001, 2005-

2007, 2009

2016-2017

SSN Catalog Radar >10 cm 1957-2007 1957-2017

MODEST (GEO) Optical >30 cm 2004-2006 2004-2009, 

2013-2014
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Data and Size Regimes

• Small particle populations are fit separately from large particle 

populations
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ORDEM 3.0 Flux for ISS 400km
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Material Distributions - ISS
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ORDEM 3.0 Flux for A-Train 705km
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Material Distribution – A-Train
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2D Flux Distribution
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Flux Dependence on Velocity and Direction
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BUMPER
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Spacecraft Environment Considerations

• Orbital debris fluxes are a function of spacecraft orbit inclination and 

altitude

• Debris flux and velocity are direction-dependent

– Custom multi-layer shields work best when optimized for particular velocities 

and directions

• Debris flux from different material types can skew the risk

– High-density (e.g., steel) debris have a disproportionate effect on risk

• Spacecraft must design for the long-haul

– A spacecraft will hopefully operate for many years

– Risk is primarily a function of exposed area and exposed time



National Aeronautics and Space Administration

69

Breakups by year:  246 1961-date

• The primary source of 

larger debris (> 1 cm) is 

from explosive 

breakups of spacecraft 

and rocket bodies

• HOOSF:  the NASA 

ODPO History of On-

orbit Satellite 

Fragmentations
• 14th ed. published 

2008

• 15th ed. published 

2018

• Four events occurred 

in 2018 after

information cut-off for 

15th ed.

• More have already 

occurred in 2019
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Breakups by cause:  246 1961-date

• Propulsion category 

accounts for majority

of breakup events

• SOZ units are Proton 

4th stage ullage 

motors

• When SOZ breakups 

are segregated, % of 

propulsion breakups 

equals historical 

deliberate breakup 

events

• Unknown category 

includes events 

whose root cause has 

not been uniquely 

identified or the 

breakup mechanism is 

unknown
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Cataloged breakup debris, 1961-date

• Multiply by 20044, the 

total number of 

breakup debris 

cataloged, to get 

absolute number in 

any category

• Propulsion category 

accounts for majority

of breakup debris 

cataloged

• While SOZ breakups 

typically result in few 

cataloged fragments, 

their eccentric parent 

orbits pose 

challenges to 

cataloging
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On-orbit Cataloged breakup debris, 1961-date

• Multiply by 9953, the 

total number of 

cataloged breakup 

debris remaining on 

orbit, to get absolute 

number in any 

category

• Deliberate category 

accounts for majority

of breakup debris on 

orbit due to intentional 

FY-1C Anti-Satellite 

(ASAT) weapon test in 

2007

• While SOZ breakups 

typically result in few 

cataloged fragments, 

their eccentric parent 

orbits pose challenges 

to cataloging
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Example Breakup - BRIZ-M

• On August 6, 2012, the Russians attempted to launch 

two communications satellites using a Proton rocket

• The BRIZ-M upper stage failed to burn properly, and 

was left stranded in an elliptical orbit with about 5 

metric tons of its propellant still aboard

• On October 16, the rocket body exploded, creating at 

least 700 trackable pieces of debris (and probably 

many more too small to be tracked) in orbits that 

cross ISS altitude

• Observed by astronomers at the Siding Springs 

Observatory
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BRIZ-M Breakup
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Previous Briz-M explosion – Feb 19, 2007

Rob McNaught, 

Siding Springs Observatory
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Chinese ASAT - Fengyun-1C 

• 950 kg Chinese weather satellite 

• 865 km x 845 km, 98.6º orbit

• Destroyed by Chinese military using a ground-based anti-satellite 

(ASAT) missile on January 11, 2007

• Created an unprecedented number of tracked debris
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Effect of a Single Event
(Catalog Populations in LEO)
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Indian ASAT

• On March 27, 2019, Indian announced it had successfully destroyed one 

of its own satellites with an ASAT weapon

• The target was destroyed at an altitude where most of the debris would 

likely reentry in a few weeks to months

• 90 debris catalogued so far

• Microsat-R

– 96.6° inclination

– 291x252 km 

– 740 kg



National Aeronautics and Space Administration

80

2009 Collision

February 10, 16:56 GMT two satellites collided near 789 km altitude

Iridium 33 (24946, 97051C)
779 x 808 km, 86.4° orbit, 556 kg 

Operational US Commercial Communication Satellite

Kosmos 2251 (22675, 93036A) 

786 x 826 km, 74.0° orbit, 900 kg 

Non-operational Russian Communication Satellite
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Iridium Collision
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Iridium Collision
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Effect of Collision on Catalog

January, 2009



National Aeronautics and Space Administration

84

Evolution of the Catalogued (>10 cm) Satellite 

Population by Mass
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Growth with no future launches

Kessler Syndrome
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Gravity
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Gravity
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Fix the Problem? – Remove Mass
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Highest Mass Objects
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Active Debris Removal

• ESA has begun experimenting with technologies that might be used for 

active debris removal
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Active Debris Removal - 1965 (!)
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Active Debris Removal – 2019?
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International Cooperation

• The Interagency Space Debris Coordination Committee (IADC) is 

composed of subject matter experts from 13 spacefaring nations, who 

meet together annually and address technical and policy issues

• Space Debris is a regular topic at the UN’s Committee on the Peaceful 

Uses of Outer Space (COPUOS)

• NASA has worked closely with the US government, IADC, and UN to come 

up with non-binding (but taken seriously nevertheless) “guidelines” for 

what a “good citizen” does in space:

– Don’t make any messes you can’t clean up – do not create lots of long-

lived debris

– Clean up after yourself – make sure to remove satellites and rocket 

bodies from busy regions of space within 25 years after end of use and 

passivate them so they don’t explode later

– Don’t hurt anyone – design your spacecraft and/or mission profile to 

minimize risk to other missions and people on the ground
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Conclusions

• Monitoring the Earth space environment is critical

– SSN catalog insufficient to characterize all debris 

– Environment is dynamic – even if we get it right today, it will change tomorrow

• With the loss of the Space Shuttle, new in situ data sources are needed to 

understand the small particle environment

• Models provide spacecraft designers and operators with tools to be able 

to make informed decisions about the safety of their space activities

• Models provide policy makers with tools to be able to make informed 

decisions about guidelines and regulations concerning space activities

• However, models are only as good as the assumptions made and the 

quality of the data behind them 
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Challenges Remain

• Adherence to national and international orbital debris mitigation 

guidelines is essential if the debris population is to be controlled

• Despite efforts to reduce accidental explosions of spacecraft and rocket 

bodies, such events continue to have dramatic effects in near-Earth 

space

• The deliberate testing of an anti-satellite                                            

weapon at high altitude by China in January 

2007 created the worst orbital debris cloud 

in history

- The majority of the debris will remain in Earth orbit 

for decades to come

• The accidental 2009 collision is only the harbinger – collisions are 

expected to become more common in the future

– Growing consensus that we may have to be more proactive in removing large debris
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Questions?
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Backups
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Recent Reentries

UARS, ROSAT, Phobos-Grunt, TRMM
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UARS Reentry in the Popular Imagination
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That Which Survives…

Texas, 1997
South Africa, 2000

Saudi Arabia, 2001

Guatemala, 2003

Argentina, 2004

Zimbabwe, 2013
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Reentry of the Jules Verne ATV

• NASA and ESA conducted a joint observation campaign of the reentry 

of the Jules Verne ATV on 29 September 2008.
– Two aircraft collected a wide variety of data from vantage points over the Pacific Ocean 

near the reentry path of the Jules Verne.

Jules Verne undocking on 

5 September 2008

Reentry over 

Pacific Ocean
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Population Distribution on the Earth

• Gridded Population of the World, version 3 (GPWv3) 

• Socioeconomic Data and Applications Center (SEDAC) at 
Columbia University 

• 2.5×2.5 arc minute cells = 4.6 km×4.6 km cells at the 
Equator 

• Reference years 1990-2015 in 5-year intervals
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Average Density of People Below Satellite Path

Inclination-Dependent Latitude-Averaged Population Density
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Probability of Falling in Populated Areas

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000 100000

Population Density [km
-2

]

P
ro

b
a

b
il
it

y
 o

f 
R

e
e

n
tr

y
 O

c
c

u
rr

in
g

 i
n

 a
 R

e
g

io
n

 W
it

h
 a

 G
iv

e
n

 

P
o

p
u

la
ti

o
n

 D
e

n
s

it
y

 o
r 

G
re

a
te

r

98 Degree Inclination

51.6 Degree Inclination

28.5 Degree Inclination Manhattan

Vatican

City

Liechtenstein

Easter

Island

Mongolia

Hong

Kong



National Aeronautics and Space Administration

10
7

Probability of Ocean Reentry
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Brewster Rockit on Reentry Risks


