National Aeronautics and Space Administration

Tutorial : An Overview of the Orbital Debris Environment

Mark Matney, Ph.D. Orbital Debris Program Office NASA Johnson Space Center

Space Debris

- Space debris = any man-made object in space that no longer serves a useful purpose
 - Note there are also natural debris meteoroids
- Intact objects, > 1 m
 - Old rocket bodies and spacecraft
 - "Operational" debris shrouds, mounts, lens caps, etc
- Fragmentation debris, 1 mm 1 m
 - Deliberate or accidental explosions from on-board energy sources
 - Unvented rocket fuel
 - Active batteries
 - Self-destruct mechanisms
 - Deliberate or accidental collisions
 - Weapons tests
 - Random collisions
 - Solid rocket motor slag
- Small debris, < 1 mm
 - Deterioration of satellite surfaces in space environment
 - Small debris impact ejecta
 - Deterioration of paint and other materials

Brewster Rockit on Debris Sources

Space Surveillance Network (SSN)

- Almost all of our <u>operational</u> knowledge of the space environment is from the U.S. Department of Defense's (DoD) Space Surveillance Network (SSN) and its parallels in other countries
 - New launches
 - Payloads
 - Rocket Bodies
 - Operational Debris (brackets, shrouds, etc.)
 - Breakup events
 - Anomalous breakups
 - Explosions both accidental and deliberate
 - Collisions between tracked objects
- It is through the SSN Catalog that we know the various orbits where humans have launched their satellites and how they have evolved over time

SSN Catalogue Orbital Environment

National Aeronautics and Space Administration Evolution of the Catalogued (>10 cm) Satellite **Population by Number**

Monthly Number of Objects in Earth Orbit by Object Type

Year

- The Combined Space Operations Center (CSpOC) is tasked with using the measurement data of the SSN to maintain a Catalog of space objects
 - Catalog consists of objects large enough to be detected by sensors of the SSN and observed often enough to determine their orbits with sufficient accuracy to recover the object on a future pass over an SSN sensor
 - This tracking capability allows the CSpOC to perform conjunction assessment calculations for satellite users
 - There is a sensitivity limit for the SSN sensors, generally given as >10 cm in low-Earth orbit (LEO), and losing sensitivity for deep space objects
 - However, we know there are many debris smaller than 10 cm in size that cannot be tracked

Future Space Fence

Collision Avoidance

- The current statistical technique used by CSpOC was developed as a joint project by the DoD and NASA originally to ensure the safety of Shuttle and ISS astronauts
- Service now provided to any space user
 - Possible conjunction warning given to registered user
 - Contains the covariance matrix and encounter geometry for each object
 - Covariance matrix gives uncertainty ellipsoid of the position of each object
 - Information can be used to compute a probability of collision
- Conjunction assessment for NASA
 - Human spaceflight handled by Mission Control in Houston and by their counterparts in Moscow
 - Robotic spacecraft handled by NASA's Conjunction Assessment Risk Analysis (CARA) team at GSFC

Collision Avoidance

- While Collision Avoidance is a prudent thing for a spacecraft operator to do, it is not a cure-all for space debris issues
- While a collision-avoidance maneuver reduces the collision risk, depending on the maneuver threshold chosen and the geometry of a conjunction, it does not mitigate 100% of the collision probability – a (sometimes substantial) residual risk remains
- For every object tracked, there are tens to hundreds of objects we cannot track that can still cause serious damage to a spacecraft
- Vast majority of objects tracked (~95%) are inert and cannot maneuver
 - By itself not a solution for problem of long-term collisional growth of the debris environment

Complementary NASA and DoD MMOD Environment Efforts

Activity

Environment Definition (>10 cm) Environment Definition (<10 cm) Environment Definition (Meteoroids)

DoD NASA (ODPO) NASA (MEO)

Lead Agency

Risk Assessments (>10 cm) Risk Assessments (<10 cm)

OD Mitigation Measures OD Environment Projection NASA NASA

NASA

DoD

Debris Sizes

- Due to high impact speed in space (~10 km/sec in LEO), even sub-millimeter debris pose a realistic threat to human spaceflight and robotic missions
 - > 10 km/sec = 22,000 miles per hour (the speed of a bullet ~1,500 miles per hour)
- Mission-ending threat is dominated by small (mm-to-cm sized) debris impacts
- Total mass: >7600 tons LEO-to-GEO (~3000 tons in LEO)

NASA Orbital Debris Program

- NASA uses a number of assets to monitor the orbital debris environment <10 cm in order to characterize:
 - Size distribution
 - Orbit distributions (inclination, altitude, eccentricity)
 - Possible sources
 - Material types
 - Shape
- NASA uses a statistical sampling technique a sensor samples the environment over time in order to make statistical conclusions about the debris populations
 - Determine how the debris are distributed in orbit
 - Allows the ability to calculate the collision/damage risk to spacecraft
 - Allows the spacecraft designers to build their spacecraft with better shielding or other techniques to minimize failure risk
 - Identify new sources and prevent future debris-creating events
 - Accurately assess the danger from known sources
 - Assess how space activities might be degrading the debris environment
 - Monitor for unforeseen new events invisible to the SSN

14

Damage Potential

NASA

TPS Penetration for Crew Return Vehicles

NASA Measurements

HUSIR/HAX Radars

- Located in Massachusetts 42.6° latitude, operated by MIT Lincoln Laboratories
- Haystack Ultrawide Satellite Imaging Radar (HUSIR previously known as Haystack)
 - 36 m diameter
 - 3 cm wavelength (X-band)
 - Can detect debris > 5 mm in LEO
- Haystack Auxiliary Radar (HAX)
 - 15 m diameter
 - 1.8 cm wavelength (Ku-band)
 - Can detect debris > 2 cm in LEO

 These radars accurately measure RCS, range, and Doppler velocity along line of sight, but have trouble with other velocity components, so they usually operate in an off-vertical mode (75° East), where Doppler velocity can be used to infer orbit inclination

Discovery of RORSAT Nak

Goldstone Radar

NASA

- Located in southern California – 35.4° latitude
- Part of NASA's Deep Space Network
- Bistatic system
 - 70 m dish + 34 m dish
 - 3.5 cm wavelength (X-band)
 - Can detect 2 mm 5 mm debris in LEO
- Limited capability and time available
- Due to upgrade of sensors, we lost the 34 m dish close to the 70 m dish (in background)
- New longer-baseline configurations have much reduced altitude overlap

Goldstone Data

2016 Goldstone Data + Altitude [km] 12000 ++ + + +

Doppler-Derived Circular Orbit Incination [degrees]

West Ford Needles

- The West Ford Needle project • was a series of experiments from 1961-1963 to launch hundreds of millions of tiny copper needles (1.78 cm long, thickness of a human hair) into short-lived polar orbits to test ability to bounce signals off the resulting "ring" around the Earth
- Solar radiation pressure should have removed individual needles from orbit in a matter of weeks, but many stuck together in large mats that continue to orbit the Earth and are tracked by the SSN
- Goldstone data indicates there are also many tiny clumps of needles still in orbit

Optical Telescopes

- Telescopes are the preferred method to observe small debris at Geosynchronous orbit (GEO) altitudes
- For more than a decade, NASA has used the Michigan Orbital Debris Survey Telescope (MODEST) to statistically monitor the GEO environment
 - 0.61 m aperture Curtis Schmidt optical telescope
 - Located in Chile, operated by University of Michigan
- Observations are conducted near the Earth's shadow to maximize the reflected sunlight from debris
 - Can detect objects down to about 30 cm in size
- Statistical survey is corrected for probability of detecting an object in a particular orbit

Statistical Survey

MCAT – Meter Class Autonomous Telescope

- NASA has recently deployed the Eugene
 Stansbery Meter-Class Autonomous
 Telescope (MCAT), a 1.3 m aperture
 Ritchey-Chretien reflecting telescope to
 Ascension Island (8.0° S), in the Atlantic
 Ocean near the Equator
- Has the ability to extend statistical surveys in GEO to smaller debris (~ 20 cm)
- Also has the capability to look for lowaltitude, low-inclination debris in LEO

In Situ

- For sizes smaller than ~2-3 mm, we rely on returned spacecraft surfaces ٠
- Small impactors leave a damage feature a hole or crater •
- Feature size is a function of ٠
 - Particle size
 - Particle mass
 - Particle shape
 - Particle density
 - Particle speed and angle of impact
 - Characteristics of impacted surface
- The chief problem is that we do not typically know these things for each ٠ particle, all we have is the feature size and position
 - Sometimes, electron microscope analysis of feature yields melted residue of impactor, letting us know the material of the particle (e.g., aluminum, steel, meteoroid).
- Use statistical techniques to "back out" debris characteristics

National Aeronautics and Space Administration

Sentinel-1A Impact 2016/08/23 – Onboard Camera

Debris Impacts Observed during EVA's

 Also in 2007, a crew member on EVA noticed a hypervelocity impact crater while working near a large aluminum panel.

MMOD Damage to ISS

• MMOD impact damages observed to radiator panel during EVA-20 (Nov. 2012)

28

MMOD Damage to ISS

ISS032e020579

observed to Service Module during Russian EVA-31 (Aug. 2012)

Close-up of SM radiator damage (1/4)

ISS032e020579

Close-up of SM radiator damage (2/4)

ISS032e020579

NAS

Close-up of SM radiator damage (4/4)

NAS

Recent ISS Radiator Imagery

Recent ISS Radiator Imagery

MMOD Strikes Observed on S1-2 HRS Center Radiators; Panel 1

Often asked if @Space_Station is hit by space debris. Yes – this chip is in a Cupola window esa.int/spaceinimages/ ...

36
Shuttle In Situ Data

National Aeronautics and Space Administration

Material Types of Shuttle Window Impacts

 It is possible to put craters from space-exposed hardware into an electron microscope and identify the material of the impactor

Identified Impactors

Types of Orbital Debris Impactors

STS-115 MMOD Impact Damage

- The debris punched all the way through the radiator.
- The face sheet hole was 2.8 mm in diameter.
- The core inside the panel was completely destroyed for at least a 2.5 cm diameter below the face sheet damage.
- This is the most significant MMOD damage recorded on the Orbiter radiators up to that time

STS-115 MMOD Impact Damage

Outer face sheet damage

Inner face sheet damage

Schematic of Radiator and Sketch of Damage

What day is trash pickup around here?

HST SM1 (STS-61, 1993)

NASA

Visible MMOD Impact Damage on WFPC2 Radiator from the On-orbit Imagery Survey

S125e006995.jpg (edited)

- Red circles: Impacts identified from SM3B images (2002)
- Blue circles: Additional impacts identified from SM4 images (2009)

NAS

Bay 5 MLI

Bay 5 MLI

HST Crater Data

Future of In Situ

 The Shuttle no longer flies, so NASA currently has no dedicated sensor to monitor the small particle environment

- The best way to measure small particles is by using a dedicated, calibrated sensor, designed to measure the impactor properties of most interest
 - Size
 - Shape
 - Material Density
 - Speed and Direction
 - Time of Impact (combined with position of sensor, can be used to determine particle orbit)

DRAGONS

 The Debris Resistive Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is a new technology initiative to measure *in situ* debris

- The resistive grid on the first layer used to estimate the particle size
- Acoustic sensors at each layer to measure path and time-of-flight
- Backstop to record total energy
- Using velocity, energy, and size, should be able to estimate mass and material density
- Impact time to compute debris orbit

Space Debris Sensor

- The technology had a flight technology demonstration on the Space Debris Sensor (SDS) aboard the ISS
- While some engineering data was obtained, the instrument suffered a fatal failure and is no longer operational

Future DRAGONS

- We are currently awaiting flight opportunities of the DRAGONS technology, especially at higher orbit altitudes
 - Debris environment is predicted to be worse at altitudes between 700 and 1000 km altitude
 - NASA and other spacecraft are spending money and resources to mitigate the predicted risk
 - We have little to no data on these small particles we are relying on models to extrapolate the risk from lower altitudes

Ground Experiments

- Sometimes it is not enough to measure events in space, they need to be studied in the laboratory under controlled conditions
- There is a long history of studying collision or explosion debris on the ground by picking up the pieces afterwards
 - Number of debris
 - Size distribution
 - Shapes
 - Delta-velocities
- The primary source of data has been the Satellite Orbital debris Characterization Impact Test (SOCIT), which used an intact Transit satellite built in the 1960's for the target of a hypervelocity impact test

Ground Experiments

- However, there have been major changes in spacecraft construction materials over the years, so a need to test the breakup models using more modern spacecraft materials
- NASA, in conjunction with US DoD and the Aerospace Corporation, conducted the DebriSat impact experiment, using a mock satellite made of modern materials
 - Included a test of a mock tank, designated DebrisLV

	Transit (SOCIT) DebriSat		
Target body dimensions	46 cm (dia) × 30 cm (ht) 60 cm (dia) × 50 cm (ht)		
Target mass	34.5 kg 56 kg		
MLI and solar panel	No	Yes	
Projectile	Al sphere	Hollow Al cylinder	
Projectile dimension, mass	4.7 cm (dia), 150 g 8.6 cm × 9 cm, 570 g		
Impact speed	6.1 km/sec 6.8 km/sec		
Impact energy to target mass ratio	78 J/g (2.7 MJ total impact energy) 235 J/g (13.2 MJ total impact energ		

A comparison between Transit and DebriSat

DebriSat

54

DebriSat

DebrisLV

Impact sequences of DebrisLV

National Aeronautics and Space Administration

DebriSat

Impact sequences of DebrisSat

DebriSat

- The debris from the impacts have all been collected, and are being carefully analyzed by a team from the University of Florida
 - Digital photos of each object
 - Mass, 3D dimensions
 - Material components identified
 - Soft-catch material being x-rayed to ascertain particle velocities and particle shapes
- More debris were recovered than we anticipated based on previous models

- Final dataset will be a detailed resource
 - Shape studies
 - RCS studies
 - Material distributions
 - Size distributions

ORDEM 3.1

- An Engineering Model is a tool (primarily) for spacecraft designers and users to understand the long-term risks of debris collisions with their spacecraft
- NASA's Orbital Debris Engineering Model ORDEM represents NASA's best estimate
 of the current and near future orbital debris environment
 - The environment is dynamic and must be updated periodically
 - Populations based on empirical data as much as possible
- The ORDEM 3 series of models have significant new capabilities over previous ORDEM models
 - Uncertainties
 - Material density categories
 - Model extended to GEO
 - Can easily calculate flux for satellites in highly elliptical orbit
- ORDEM 3.1 is an update of the environment based on the latest data, but with minimal changes to the model structure
 - Model completed and is undergoing review
 - Should be available later in 2019

Data Sources for ORDEM Models

Data Source	Data Type	Size Limits	ORDEM 3.0	ORDEM 3.1
STS Windows and Radiators	In situ	10 µm - 1 mm	1995-2011	1995-2011
HST WFPC-2 Radiator	In situ	50 µm - 300 µm		1990-2009
HST Bay 5 MLI	In situ	10 µm - 300 µm		1990-2009
HUSIR/Haystack	Radar	>5.5 mm	1999-2003, 2007-2009	2013-2017
HAX	Radar	>1 cm	1999-2003, 2007-2009	
Goldstone	Radar	2 mm - 8 mm	2001, 2005- 2007, 2009	2016-2017
SSN Catalog	Radar	>10 cm	1957-2007	1957-2017
MODEST (GEO)	Optical	>30 cm	2004-2006	2004-2009, 2013-2014

Data and Size Regimes

Small particle populations are fit separately from large particle populations

ORDEM 3.0 Flux for ISS 400km

Material Distributions - ISS

ORDEM 3.0 Flux for A-Train 705km

Material Distribution – A-Train

64

10^-4

Flux Dependence on Velocity and Direction

BUMPER NASA/JSC BUMPER-II Meteoroid/Debris Threat Assessment Code

T.G. Prior • NASA/JSC Hypervelocity Impact Technology Facility • 8/26/2000

Spacecraft Environment Considerations

- Orbital debris fluxes are a function of spacecraft orbit inclination and altitude
- Debris flux and velocity are direction-dependent
 - Custom multi-layer shields work best when optimized for particular velocities and directions
- Debris flux from different material types can skew the risk
 - High-density (e.g., steel) debris have a disproportionate effect on risk
- Spacecraft must design for the long-haul
 - A spacecraft will hopefully operate for many years
 - Risk is primarily a function of exposed area and exposed time

Breakups by year: 246 1961-date

- The primary source of larger debris (> 1 cm) is from explosive breakups of spacecraft and rocket bodies
- HOOSF: the NASA ODPO <u>History of On-</u> <u>orbit Satellite</u> <u>Fragmentations</u>
 - 14th ed. published 2008
 - 15th ed. published
 2018
 - Four events occurred in 2018 *after* information cut-off for 15th ed.
 - More have already occurred in 2019

Breakups by cause: 246 1961-date

- Propulsion category accounts for majority of breakup events
- SOZ units are Proton 4th stage ullage motors
- When SOZ breakups are segregated, % of propulsion breakups equals historical deliberate breakup events
- Unknown category includes events whose root cause has not been uniquely identified or the breakup mechanism is unknown

Cataloged breakup debris, 1961-date

- Multiply by 20044, the total number of breakup debris cataloged, to get absolute number in any category
- Propulsion category accounts for majority of breakup debris cataloged
- While SOZ breakups typically result in few cataloged fragments, their eccentric parent orbits pose challenges to cataloging

On-orbit Cataloged breakup debris, 1961-date

Multiply by 9953, the total number of cataloged breakup debris *remaining on orbit*, to get absolute number in any category

•

- Deliberate category accounts for majority of breakup debris on orbit due to intentional FY-1C Anti-Satellite (ASAT) weapon test in 2007
- While SOZ breakups typically result in few cataloged fragments, their eccentric parent orbits pose challenges to cataloging
Example Breakup - BRIZ-M

- On August 6, 2012, the Russians attempted to launch two communications satellites using a Proton rocket
- The BRIZ-M upper stage failed to burn properly, and was left stranded in an elliptical orbit with about 5 metric tons of its propellant still aboard
- On October 16, the rocket body exploded, creating at least 700 trackable pieces of debris (and probably many more too small to be tracked) in orbits that cross ISS altitude
- Observed by astronomers at the Siding Springs Observatory

BRIZ-M Breakup

2012/10/16 14:05:00 UT

Previous Briz-M explosion – Feb 19, 2007

Rob McNaught, Siding Springs Observatory

> Copyright Ray Palmer www.MyAstroSpace.com www.NaturesPeak.com.au

Chinese ASAT - Fengyun-1C

• 950 kg Chinese weather satellite

• 865 km x 845 km, 98.6° orbit

 Destroyed by Chinese military using a ground-based anti-satellite (ASAT) missile on January 11, 2007

• Created an unprecedented number of tracked debris

Effect of a Single Event (Catalog Populations in LEO)

Indian ASAT

- On March 27, 2019, Indian announced it had successfully destroyed one of its own satellites with an ASAT weapon
- The target was destroyed at an altitude where most of the debris would likely reentry in a few weeks to months
- 90 debris catalogued so far
- Microsat-R
 - 96.6° inclination
 - 291x252 km
 - 740 kg

2009 Collision

February 10, 16:56 GMT two satellites collided near 789 km altitude

Iridium 33 (24946, 97051C) 779 x 808 km, 86.4° orbit, 556 kg Operational US Commercial Communication Satellite

Kosmos 2251 (22675, 93036A)

786 x 826 km, 74.0° orbit, 900 kg Non-operational Russian Communication Satellite

Iridium Collision

Iridium Collision

Effect of Collision on Catalog

Altitude (km)

Evolution of the Catalogued (>10 cm) Satellite Population by Mass

Growth with no future launches Kessler Syndrome

85

Gravity

Gravity

Rubes

"Well, I'll be ... I guess the little chicken was right."

Fix the Problem? – Remove Mass

Highest Mass Objects

Active Debris Removal

 ESA has begun experimenting with technologies that might be used for active debris removal

Active Debris Removal - 1965 (!)

92

Active Debris Removal – 2019?

- The Interagency Space Debris Coordination Committee (IADC) is composed of subject matter experts from 13 spacefaring nations, who meet together annually and address technical and policy issues
- Space Debris is a regular topic at the UN's Committee on the Peaceful Uses of Outer Space (COPUOS)
- NASA has worked closely with the US government, IADC, and UN to come up with non-binding (but taken seriously nevertheless) "guidelines" for what a "good citizen" does in space:
 - Don't make any messes you can't clean up do not create lots of longlived debris
 - Clean up after yourself make sure to remove satellites and rocket bodies from busy regions of space within 25 years after end of use and passivate them so they don't explode later
 - Don't hurt anyone design your spacecraft and/or mission profile to minimize risk to other missions and people on the ground

Conclusions

- Monitoring the Earth space environment is critical
 - SSN catalog insufficient to characterize all debris
 - Environment is dynamic even if we get it right today, it will change tomorrow
- With the loss of the Space Shuttle, new *in situ* data sources are needed to understand the small particle environment
- Models provide spacecraft designers and operators with tools to be able to make informed decisions about the safety of their space activities
- Models provide policy makers with tools to be able to make informed decisions about guidelines and regulations concerning space activities
- However, models are only as good as the assumptions made and the quality of the data behind them

Challenges Remain

- Adherence to national and international orbital debris mitigation guidelines is essential if the debris population is to be controlled
- Despite efforts to reduce accidental explosions of spacecraft and rocket bodies, such events continue to have dramatic effects in near-Earth space
- The deliberate testing of an anti-satellite weapon at high altitude by China in January 2007 created the worst orbital debris cloud in history
 - The majority of the debris will remain in Earth orbit for decades to come
- The accidental 2009 collision is only the harbinger collisions are expected to become more common in the future
 - Growing consensus that we may have to be more proactive in removing large debris

Questions?

Backups

Recent Reentries UARS, ROSAT, Phobos-Grunt, TRMM

NA S

UARS Reentry in the Popular Imagination

BREWSTER ROCKIT: SPACE GUY!

BY TIM RICKARD

That Which Survives...

Texas, 1997

South Africa, 2000

Zimbabwe, 2013

Guatemala, 2003

Argentina, 2004

Saudi Arabia, 2001

Reentry of the Jules Verne ATV

- NASA and ESA conducted a joint observation campaign of the reentry of the Jules Verne ATV on 29 September 2008.
 - Two aircraft collected a wide variety of data from vantage points over the Pacific Ocean near the reentry path of the Jules Verne.

Jules Verne undocking on 5 September 2008

Reentry over Pacific Ocean

Population Distribution on the Earth

- Gridded Population of the World, version 3 (GPWv3)
- Socioeconomic Data and Applications Center (SEDAC) at Columbia University
- 2.5×2.5 arc minute cells = 4.6 km×4.6 km cells at the Equator
- Reference years 1990-2015 in 5-year intervals

Average Density of People Below Satellite Path

Inclination-Dependent Latitude-Averaged Population Density

Probability of Falling in Populated Areas

Probability of Ocean Reentry

10 TASA

Brewster Rockit on Reentry Risks

