

Challenges of Implementing Speech Control in a Spacecraft System

Only in the Movies!!

- Background
 - NASA mission roadmap
 - Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations
- Challenges
- Development approach
- Recap & Final Remarks

Background

- NASA mission roadmap
- Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations
- Challenges
- Recap & Final Remarks

New Thinking--Four-Phased Approach to Mars

Now Using the International Space Station

2020s

Advancing technologies, discovery and creating economic opportunities

2030s Leaving the Earth-Moon System and Reaching Mars Orbit

Phase 0

Solve exploration mission challenges through research and systems testing on the ISS. Understand if and when lunar resources are available

Phase 1

Conduct missions in cislunar space; assemble Deep Space Gateway and Deep Space Transport

Capability Evolution Phase 2

Complete Deep Space Transport and conduct Mars verification mission

Phases 3 and 4

Missions to the Mars system, the surface of Mars

- NASA mission roadmap
- Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations
- Challenges
- Development approach
- Recap & Final Remarks

Deep Space Mission Operations

Crew/Mission Control-Dependent

Crew/Vehicle-Dependent

Current

Future-Notional

On-board Mission Control

- Background
 - NASA mission roadmap
 - Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations
- Challenges

Brief History of Spacecraft Command and Control

Evolution of Spacecraft Command and Control Complexity

Space Shuttle

Space Station

Orion

- Background
 - > NASA mission roadmap
 - > Mission control changing role for deep space missions
- Evolution of spacecraft control
- **NASA Speech Recognition Investigations**
- Challenges

- Development approach
- Recap & Final Remarks

NASA Speech Recognition Investigations Ground

- Voice Control of Shuttle CCTV System
- EVA Retriever
- EVA Suit Control
- Advanced front end processing
- Deep Space habitat
- Aeronautics

NASA Speech Recognition Investigations-Space Shuttle Flight Demonstration

- STS-41- Speaker-dependent
 - $\ensuremath{\textcircled{2}} \qquad \text{Effects of } \mu \text{-gravity of the voice}$
 - Commanding by voice
 - 10% to 30% reduction in accuracy
 - **On-orbit retrain capability**
 - STS-78- Speaker independent
 - Same objectives as STS-41
 Commercial adaptive system
 Confidence check
 - Macro-commanding

NASA Speech Recognition Investigations-ISS Flight Demonstration

Background

- NASA mission roadmap
- Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations

Challenges

Development Approach
Recap & Final Remarks

Factors affecting robust speech recognition application in space

Reactors affecting robust speech recognition in space-Cont'd

Background

- NASA mission roadmap
- > Mission control changing role for deep space missions
- Evolution of spacecraft control
- NASA Speech Recognition Investigations
- Challenges

- Development Approach
- Recap & Final Remarks

Development Approach

Will speech control ever be this good?

Recap & Final Remarks

- Deep space mission system complexity will need better system HCI
- Speech recognition for command and control is a viable option for future missions-extra help to a small crew on a complex spacecraft/habitat,
- Importance of trust in the system-Reliable, robust, and understandable

Questions?

