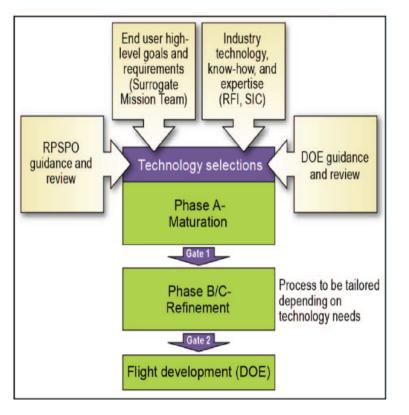
National Aeronautics and Space Administration



### MATURATION OF DYNAMIC POWER CONVERTORS FOR RADIOISOTOPE POWER SYSTEMS


Scott Wilson, Sal Oriti NASA Glenn Research Center February 26, 2019 Nuclear and Emerging Technologies for Space (NETS) 2019

# **Maturation of Dynamic Power Convertors**

- Radioisotope Power Systems Program implemented maturation model developed for other projects
  - 1. Established a Surrogate Mission Team (SMT) to provide clear mission pull and requirements context
  - 2. Execute the evaluation model to mature available technologies to a TRL that is suitable for flight development
- Surrogate Mission Team (SMT) developed the multi-mission requirements used in the technology maturation contracts

#### • Risk Informed Life Testing (RILT) model


- Was designed to quantify the likelihood that components and subassemblies will meet life goal with margin
- Is being used to identify components and materials that need improved life data
- Integrated Product Team (IPT) formed by the project
  - To monitor contract progress to identify risk of insufficient margin
  - Identify potential testing or analysis to address risks



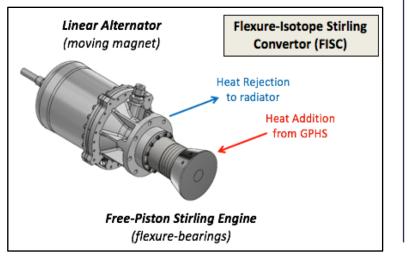
# **Requirements & Environments**

| Item                         | Description                                                            |  |
|------------------------------|------------------------------------------------------------------------|--|
| Design Life                  | 20 years continuous operation at full power                            |  |
| Power                        | Suitable for a 200 to 500 $W_e$ generator                              |  |
| Efficiency                   | ≥ 24% at T <sub>cold-end</sub> ≥ 100 °C                                |  |
| Specific Power               | 20 We/kg (convertor only)                                              |  |
| Degradation                  | Output power changes < 0.5 % per year                                  |  |
| Partial power                | Maintains 20% conversion efficiency at 50% heat input                  |  |
| Atmosphere compatibility     | Earth, Mars, Titan, vacuum, Argon                                      |  |
| Hot-End Temp                 | < 1000 °C                                                              |  |
| Cold-End Temp                | Capable of 20 to 175 °C                                                |  |
| Random Vibe                  | Launch spectrum for 1 min in each axis                                 |  |
| Static Accel                 | 20 g for 1 minute, 5 g for 5 days                                      |  |
| Tolerance to Loss of<br>Load | Survive a loss of electrical load for 10 seconds while at full power   |  |
| EMI                          | < 100 nT at 1 m while at full power                                    |  |
| Radiation                    | No degradation after exposure to 300 krad                              |  |
| Autonomy                     | No external commands needed                                            |  |
| Transmitted Forces           | Enables generator with less than 10 N transmitted forces to spacecraft |  |
| Size                         | Enables generator for shipping cask                                    |  |

- Surrogate Mission Team (SMT) membership from major robotic mission centers and agency partners (RPS Program, DOE, GRC, JHU-APL, GSFC, JPL)
- SMT used target environments as basis for requirements development



### **DPC Contracts**


• Formulation

| Phase                                                  | Duration  | Contractor Work    | Government Work                                |  |
|--------------------------------------------------------|-----------|--------------------|------------------------------------------------|--|
| 1                                                      | 6 months  | Design             | Review<br>Risk Informed Life Testing analysis  |  |
| Decision Gate 1<br>(move to gate 2?)                   |           |                    |                                                |  |
| 2                                                      | 18 months | Fabrication & Test | Review<br>IV&V Plan, test facility preparation |  |
| Decision Gate 2<br>(recommend for flight development?) |           |                    |                                                |  |
| 3                                                      | 12 months | Support            | IV&V testing and analysis<br>Model validation  |  |
| Potential Decision Gate n                              |           |                    |                                                |  |

## **Dynamic Power Convertors for RPS Contracts**

#### Flexure-Isotope Stirling Convertor (FISC)

- American Superconductor Corp (AMSC)
- Flexure bearing
- TDC derivative
- Engineering challenges:
  - Close clearance noncontacting seals, high-cycle fatigue, high-temp creep, high-temperature rejection
- **Status:** Production in progress, 50% through Phase 2



#### **Turbo-Brayton Convertor (TBC)**

• Creare

**Turbo-Brayton** 

**Convertor (TBC)** 

From Heat Source

Assembly

From Heat

Rejection

Assembly

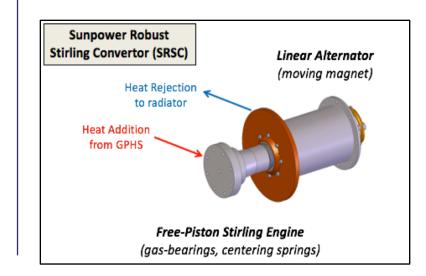
Turbomachine

Assembly

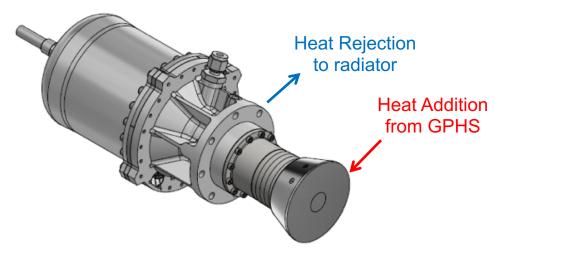
- Hydrodynamic gas bearing
- Cryocooler derivative
- Engineering challenges:
  - Close clearance noncontacting seals, highperformance heat exchangers, high-temp creep, hightemperature rejection
  - **Status:** Production in progress, 50% through Phase 2

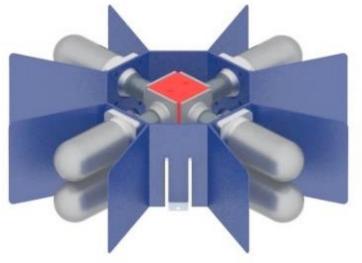
**To Heat Rejection** 

Assembly


To Heat Source

Assembly


Recuperator

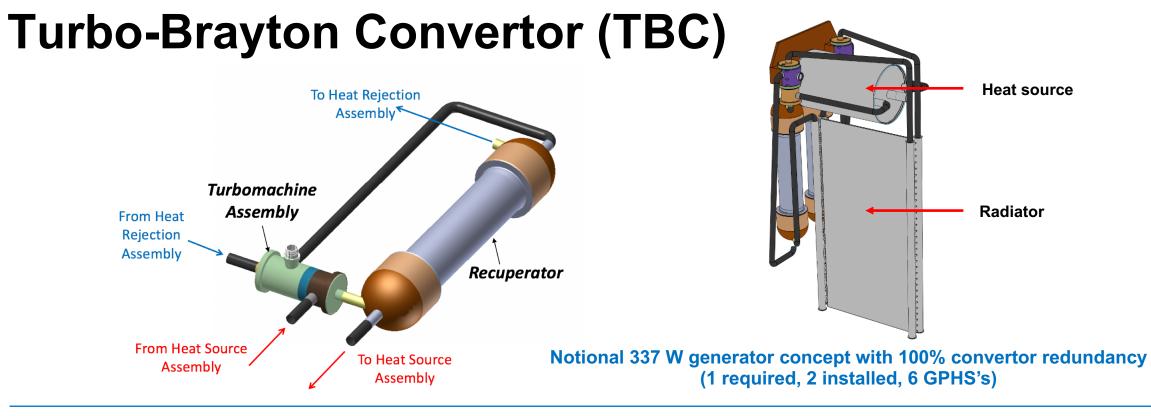

#### Sunpower Robust Stirling Convertor (SRSC)

- Hydrostatic gas bearing (Sunpower Inc.)
- ASC derivative
- Engineering challenges:
  - Close clearance noncontacting seals, high-cycle fatigue, high-temp creep, high-temperature rejection
  - **Status:** Production in progress, 40% through Phase 2



### **Flexure Isotope Stirling Convertor (FISC)**



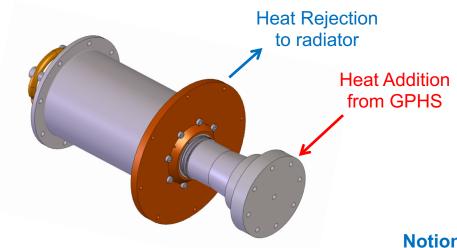


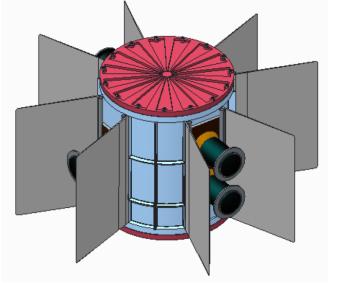

Notional 250 W generator concept with 100% convertor redundancy (4 required, 8 installed, 4 GPHS's)

#### **Design Parameters**

| Hot-end Temp  | 650 °C                         |
|---------------|--------------------------------|
| Cold-end Temp | 20 to 175 °C                   |
| Efficiency    | 31% @ T <sub>COLD</sub> =100°C |
| Power Output  | 70 W <sub>ac</sub>             |
| Mass          | 3.3 kg (>20W <sub>e</sub> /kg) |

- Flexure-bearing based free-piston Stirling convertor
- Derivative of Technology Demonstration Convertor (TDC) from a 1990's SBIR and SRG-110 project
- Design deltas relative to TDC to improve the following:
  - Higher radial stiffness flexures, overstroke tolerance, hot-end temperature margin
  - Independently verifiable subassemblies
  - Higher efficiency alternator, higher cold-end temp capability





#### **Design Parameters**

| Turbine Inlet Temp<br>(Hot-end)  | 730 °C                          |  |
|----------------------------------|---------------------------------|--|
| Compressor Inlet<br>Temp (Tcold) | 20 to 175 °C                    |  |
| Efficiency                       | 26% @ T <sub>COLD</sub> =100°C  |  |
| Power Output                     | 337 W <sub>ac</sub>             |  |
| Mass                             | 16.5 kg (>20W <sub>e</sub> /kg) |  |

- Closed Brayton continuous flow cycle with recuperation to achieve high efficiency
- Scaled-down from previous designs
- Leverages heritage from Creare's Hubble Space Telescope NICMOS cooler
- Two counter-rotating units permits redundancy, and nullifies angular momentum

## **Sunpower Robust Stirling Convertor (SRSC)**





Notional 255 W generator concept with 50% convertor redundancy (4 required, 6 installed, 4 GPHS's)

#### **Design Parameters**

| Hot-end Temp  | 640°C                            |  |
|---------------|----------------------------------|--|
| Cold-end Temp | 20 to 175 °C                     |  |
| Efficiency    | 30% @ T <sub>COLD</sub> =100°C   |  |
| Power Output  | 64 W <sub>ac</sub>               |  |
| Mass          | 1.6 kg (> 20 W <sub>e</sub> /kg) |  |

- Gas-bearing based free-piston Stirling convertor
- Derivative of Advanced Stirling Convertor (ASC) from ASRG Project
- Design deltas relative to ASC to improve the following:
  - Higher radial gas bearing load capacity, higher cold-end temperature capability
  - Regenerator robustness improvements, debris tolerance
  - Overstroke tolerance, passive collision prevention system, bumpers, encapsulated magnets

# **Prototype Testing and Analysis**

#### Phase I - Complete

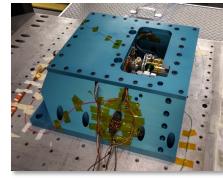
- Analysis completed to determine margin (against requirements and for hot thin-walled pressure barriers, joint analysis, temperature limits for various materials, etc.)

#### Phase II – In progress (~50% complete)

- Beginning of phase for final analysis for any revised features, production readiness
- Prototype fabrication
- Test prior to delivery (required temperatures, 50% heat input, start/stop, temporary loss of load)

#### Phase III – Next

- Government IV&V Testing


## Independent Validation & Verification Testing

- Demonstrate robustness to critical environments
  - Ground operations —
    - Horizontal orientation in different quadrants
    - Start/stop cycling
    - Thermal cycling
    - Steady operation
  - Random vibration simulates launch environment \_
  - Constant acceleration \_
    - Simulates potential spin stabilization for short period (days)
    - Simulates spacecraft entry into an atmosphere (entry, decent, and landing or EDL)
- Inspecting data and hardware to verify robustness ٠
  - Steady operation period before and after each critical test
  - Partial disassembly desired to enable inspection of \_ running surfaces





#### Launch System



Cruise



Axis of rotatior

Spin Stabilization and EDL

# **GRC Dynamic Power Test Facilities**

- GRC's Stirling Research Laboratory (SRL)
  - Able to test dynamic convertors, controllers, and electrically heated generators
  - Unattended 24/7 operation to acquire life & reliability data, automated data collection and archiving, safety provisions for graceful shutdown in case of fault or power outage
  - **1,000,000 hours** of free-piston Stirling convertor operation achieved on October 24, 2018
  - Current record holder for longest operating free-piston Stirling convertor accumulated over 13.2 years of operation
  - Longest running free-piston Stirling convertor after launch vibration has accumulated 9.1 years of operation
  - Longest running free-piston Stirling convertor on engineering unit controller accumulated 4.9 years of operation
- Dedicated thermal vacuum facility for relevant environment tests
  - Over 25,000 hours of convertor operation in vacuum
- Performs tactical and durability tests for IV&V



# **Stirling Convertor Extended Operation**

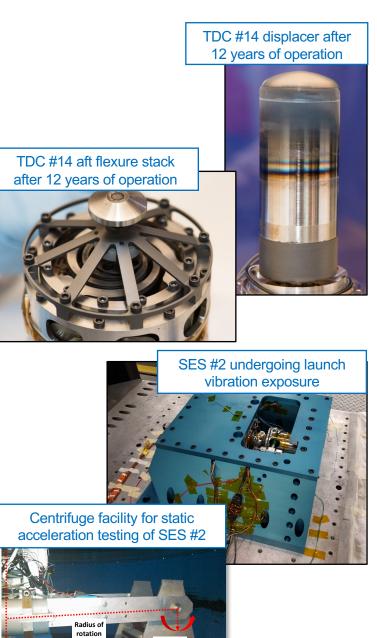
- Currently 12 convertors are on extended operation testing in the GRC SRL
- TDC #13 started operation in June 2003 and is the longest running Stirling convertor

| Project &<br>Provider            | Test Article                  | Hrs of Operation   |
|----------------------------------|-------------------------------|--------------------|
| <b>SRG 110</b><br>Infinia, Corp. | TDC #13                       | 116,058 (13.2 yrs) |
|                                  | TDC #15 & #16                 | 108,212 each       |
|                                  | SES #2*<br>(SRG-110 eng unit) | 8,820              |
| <b>ASRG</b><br>Sunpower, Inc.    | ASC-E3 #4* , #9               | 34,210 / 20,253    |
|                                  | ASC-E3 #6* , #8               | 27,035 / 22,887    |
|                                  | ASC-0 #3*                     | 79,284 (9.1 yrs)   |
|                                  | ASC-L*                        | 42,492 (4.9 yrs)   |

Cumulative Per-Convertor Runtime as of Feb 24, 2019 \*Have undergone random vibe

(20 years = 175,000 hrs)




ASC-E3 Pair Extended Operation Test Article

### **Recent Hardware Assessments**

- TDC #14 inspection after 105,620 hrs of operation (12 years)
  - No sign of flexure degradation
  - Signs of oxidation on expected surfaces likely from early non-hermetic operation
  - Geometric stability verified via Coordinate Measuring Machine (CMM)
  - Evidence of oxide residue/dust in various areas did not degrade functionality of alternator or flexure bearings

#### Random Vibration & Centrifuge Testing of SES #2

- Engineering Unit convertor from SRG-110 project successfully passed launch simulation and constant acceleration while operating
- **Vibration testing**: 10.35 grms profile formulated by SMT, encompasses wide span of launch vehicles, 2 min duration at full random vibe level
  - » Reduce piston amplitude for axial exposure (expected), temporary reduction in power output during lateral axes exposures (expected)
- Centrifuge testing: Static acceleration exposure up to 5g axial and 20g lateral successfully completed in April 2018
- SES #2 now operating continuously at full power, 8,820 hrs accumulated



Axis of rotation

# Conclusion

- DPC contracts started in late 2017 and are about half way through Phase 2 now
- Fabrication is in progress and first operation is anticipated in late summer
- Contracts have resulted in promising designs thus far
- Research continues at NASA GRC utilizing existing hardware to identify relevant risks
- NASA GRC is preparing for DPC prototype IV&V testing in 2020
- Dynamic Power Convertor for RPS
  - SMT identified requirements
  - Contracts being used to develop conversion technologies
  - Government IV&V testing will verify prototypes meet requirements
  - Decision Gate 2 could result in recommendation for flight development

### Special thanks to:



- RPS Program and DRPS Project
- Stirling Research Laboratory Team

### Thank you for attending