2019 Scientific Ballooning Technologies Workshop

Telemetry Options for LDB Payloads

May 15, 2019

Chris Field Principal Electrical Engineer

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Current LOS Telemetry Options

- 1 MHz bandwidth digital transmitter
 - 330 Kbit bi-phase encoded data
 - ≈ 0.5 A @ 28V
- 3 MHz bandwidth digital transmitter
 - 1 Mbit bi-phase encoded data
 - ≈ 1.1 A @ 28V
- Analog video transmitter
 - NTSC
 - ≈2A @28V

Ethernet Encoded Telemetry Transmitter

- Ethernet interface (UDP multicast packets)
 - Can handle multiple data sources with network switch
- Up to 8 Mbps with 10MHz bandwidth allocation
- Up to 12 Mbps with new 15.6MHz bandwidth allocati
 Currently only in Continental USA
- Flown at 8 Mbps on 4 flights out of FTS FY18 campaign
- Testing at 12Mbps planned for FTS campaign
- CSBF is not currently logging this data, it will be the responsibility of the end user to log all data.
- Science availability possibly in 2020

Video

Current TDRSS Telemetry Options

- Powered by CSBF
- Omni Antenna
 - 6-10 Kbps data
 - CSBF downlinks data in 2041 byte packets
- High Gain Antenna
 - 93 Kbps data
 - No packetizing
- Uplink commanding only available when requested by science
 - CSBF requests 24 hour notice for TDRS commanding requirements

Current Iridium Telemetry Options

- Iridium SBD
 - Email based
 - Always available
 - Uplink commands
 - Commands are checked 1/minute
 - Downlink 255 byte science packet
 - One packet every 1 to 15 minutes (selectable)
- Iridium Dialup
 - Usage must be requested
 - Uplink commands
 - Commands received "instantly"
 - Downlink 255 byte science packet
 - Downlink data through "high rate" port
 - The connection is only 2400 baud
- Iridium Pilot
 - IP based system
 - Up to 134 Kbps throughput
 - Typical throughput is ≈ 60 to 75Kbps (service is bursty)
 - Connect to system from anywhere in the world
 - Mission success cannot depend on Iridium Pilot link reliability

Future Telemetry Options

Low Cost TDRSS Transceiver (LCT2)

- Designed and built at WFF
- Variable output power (5-20W)
- Data rates up to 1 Mbps
- Test flights
 - 150kbps FY15 Ft. Sumner (FLT 667NT)
 - 300kpbs FY18 FT. Sumner (FLT 689N)
- Test flight planned for FY19 Ft. Sumner at 1Mbps
- Science interface
 - 6 kbps 75 kbps: SIP High Rate interface (RS232)
 - 100 kbps 1 Mbps: Ethernet (UDP packets)
- Only one LCT2 can operate on one satellite at data rates above 150kbps
- Limited Science availability possibly in 2020

Lower Antenna Requirements

- LOS antenna hang below the gondola (minimum 1ft)
- Standard CSBF configuration
 - 2 Receiver antennas
 - 1" wide X 27" long
 - Typically 24" separation
 - 2 transmitter antennas
 - 5" diameter X 3" long
 - Typically 24" separation and away from receiver antennas
- Standard Science configuration
 - 1 transmit antenna for Sci TM
 - 1 transmit antenna for Sci Video
- FAA transponder antenna
 - 5" diameter X 3" long
 - NOT USED IN ANTARCTICA

Upper Antenna Requirements

- Upper antennas need an unobstructed view of the sky; they should be the highest objects on the gondola
- Standard LDB configuration
 - 3 GPS antennas
 - 4" diameter X 1" tall
 - 3 Iridium antennas
 - 3" diameter X 7" tall
 - 2 feet separation between radiating antennas
 - TDRSS Omni
 - 7" diameter X 12" tall (mid-latitude)
 - 7" diameter X 27" tall (Antarctic)
 - 2 feet separation between radiating antennas
- TDRSS HGA
 - 24" diameter X 16" tall
 - 25 lbs
 - Requires two additional GPS antennas with a minimum separation of 8' (minimum 2 feet from any Iridium antenna)
- Iridium Pilot
 - 23" diameter X 8" tall
 - 28 lbs
 - 3 feet separation to any other antenna

Science to SIP interface

- Two Low Rate Science ports (one per SIP flight computer):
 - RS232: Baud Rate = 1200
 - Downlink telemetry 255 Byte packet, uplink commanding
 - Extended commanding available (up to 255 bytes per transmission)
 - Commanding through both SIP flight computers is required.
 - GPS position, time, and pressure altitude can be requested through this port.
- Two High Rate Science ports (one per SIP flight computer):
 - RS232: Baud Rate = up to 115,200 (configurable)
 - Must allow for different "effective" bit rates.
 - TDRSS 6 kbps to 75 kbps (depending on link margin and antenna)
 - Iridium up to 2 kbps max
- TDRSS Direct
 - RS232: Baud Rate = 115,200
 - Data Rate = 92 kbps
- IRIDIUM Pilot
 - Cat-5 Ethernet connected
 - port configurable
- Science Stack (control and TM) providing:
 - Analog and Digital input channels
 - Command outputs
 - Optically isolated and powered by Science

Science to CSBF ROCC/OCC Interface

- Two Science ports each to the LDB OCC and ROCC computers are required.
 - data port at 115,200 baud (configurable)
 - commanding port at 2400 baud
- Third port required for TDRSS HGA (TDRSS Direct Data – 93kbps) at OCC

THE VALUE OF PERFORMANCE.

