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Why Electric Propulsion?

• Fuel (xenon) is storable, does not boil 
off, and can be resupplied 

• Advanced EP provides the ability to 
move habitat systems to various orbits 
around the moon

– Halo, Lagrangian, or other Earth-Moon 
orbits

• Analyses of in-space orbit transfers in 
the lunar vicinity shows a 5 to 15 fold 
savings in propellant with this system as 
compared to chemical-only systems with 
equivalent trip times

• Early use supports ensured extensibility 
to future Mars class transportation 
system

– Also directly applicable to a wide range 
of robotic and human spaceflight 
missions 8



Hall Effect Thruster Overview
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• Hall effect thrusters (HETs)
– Electrostatic EP systems that 

offer:
• High thrust efficiency 
• High thrust density

– Theory of operation:
• Cathode electrons trapped 

by perpendicular electric 
and magnetic fields (Hall 
current)

• Propellant:
1. Injected by anode
2. Collisionally ionized by 

Hall current
3. Ion accelerated by 

electric field to 
generate thrust



Advanced Electric Propulsion System (AEPS)

• Since 2012, NASA has been 
developing a 14-kW Hall thruster 
electric propulsion string that can 
serve as the building block for the 
high-power system on PPE

– Result: Hall Effect Rocket with 
Magnetic Shielding (HERMeS) 
Technology Development Units 
(TDUs)

• Development work transitioned to 
Aerojet Rocketdyne via a 
competitive selection for the AEPS 
contract

– Contract includes development and 
qualification of the entire EP string 
(thruster, power processing unit, xenon 
flow controller, and harnessing)
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Image from GRC-E-DAA-TN45528



Comparison to State of the Art
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Performance 
Parameter State of the Art AEPS

Thruster Input Power 4.5 kW 12.5 kW

Thrust 0.24 N 0.60 N

Specific Impulse 2040 sec 2000-2600 sec

Propellant Throughput 450 kg 1700 kg

Life limited by erosion of discharge channel
Image from NASA/TM 2006-214453

Magnetic shielding 
eliminates channel 

erosion

Life limited by erosion 
of inner/outer pole 
covers and keeper

(lower rate)



Technology Development Activities at NASA

• NASA continues to support the AEPS development by leveraging in-house expertise, 
plasma modeling capability, and world-class test facilities

• NASA also executes AEPS and mission risk-reduction activities to support the AEPS 
development and mission applications

– Activities include the performance of wear tests to inform service-life assessments for 
magnetically-shielded thrusters
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HERMeS Wear Tests

• 2016: TDU-1 Wear Test: AIAA 2016-5025
– Goal: provide first quantitative insight into wear and performance trends over an 

extended period of thruster operation
– 1700 h of operation at 600 V, 12.5 kW

• 2017: TDU-3 Short Duration Wear Test (SDWT): IEPC 2017-207
– Goal: quantify the impact of operating condition on thruster life
– 200 h segments (7x) each performed at a different operating condition

• 2017-2018: TDU-3 Long-Duration Wear Test (LDWT): AIAA 2018-4645
– Goal: pathfinder test for the planned 23 kh AEPS life and qualification campaign
– 3,570 h total operation split between 6 segments

• 2 segments at 600 V, 12.5 kW
• 3 segments at 300 V, 6.25 kW (impact of magnetic field on wear)
• 1 segment at 3x nominal facility pressure (impact of background pressure on wear)
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Key Findings: Performance
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Performance and stability vary by less than the uncertainty during 

LDWT and when compared against previous TDU wear tests



Key Findings: Performance
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Constant performance of HERMeS over LDWT indicates 

effectiveness of magnetic shielding topology 

SOA Hall Thruster
Thrust decrease of ~3% over 

first 500 h of operation caused 
by erosion of discharge channel

Images from NASA/TM:
20060039356
2006-214453



Experimental Apparatus: Wear Measurements

• Graphite IFPC, keeper, and OFPC 
modified to enable wear measurements

– Components polished pre-test to maximize 
surface uniformity

– Graphite masks installed to provide 
unexposed reference surfaces:

• IFPC: two graphite strips covering 
approximately 95% of radius at 2 and 8 
o’clock

• Keeper: graphite ring with a tab protruding 
radially inward 

• OFPC: series of graphite strips covering 
approximately 95% of radius

• Erosion measurements made with a 
chromatic, white-light, non-contact 
profilometer

– Data analyzed per ISO 5436-1 guidance 
for a type A1 step

– Typical uncertainties ±2 µm accounting for:
• Instrument error
• Surface roughness
• Non-flat surface geometry
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Results: IFPC Wear
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Cathode Discharge 
Channel

Mask Fastener

Key Observations:
1) The erosion rate varies 

with radius
– 300 V strongly varying



Results: IFPC Wear
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Cathode Discharge 
Channel

Mask Fastener

Key Observations:
1) The erosion rate varies 

with radius
– 300 V strongly varying
– Maxima near 0.97



Results: IFPC Wear
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Cathode Discharge 
Channel

Mask Fastener

Key Observations:
1) The erosion rate varies 

with radius
– 300 V strongly varying
– Maxima near 0.97

2) The erosion rate at 600 V 
decreases with time

– Consistent with TDU-1 
wear test

3) The erosion rate at 600 
V/1 B is 76% less than 
300 V/1 B

– Driven by axial shift in 
acceleration zone



Results: IFPC Wear
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Cathode Discharge 
Channel

Key Observations:
1) The erosion rate varies 

with radius
– 300 V strongly varying
– Maxima near 0.97

2) The erosion rate at 600 V 
decreases with time

– Consistent with TDU-1 
wear test

3) The erosion rate at 600 
V/1 B is 76% less than 
300 V/1 B

– Driven by axial shift in 
acceleration zone

4) At 300 V, the erosion rate 
increases with magnetic 
field strength

– Cause not presently 
known



Results: IFPC Wear
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Cathode Discharge 
Channel

Key Observations:
1) The erosion rate varies 

with radius
– 300 V strongly varying
– Maxima near 0.97

2) The erosion rate at 600 V 
decreases with time

– Consistent with TDU-1 
wear test

3) The erosion rate at 600 
V/1 B is 76% less than 
300 V/1 B

– Driven by axial shift in 
acceleration zone

4) At 300 V, the erosion rate 
increases with magnetic 
field strength

– Cause not presently 
known

5) IFPC wear is 
azimuthally symmetric



Inner Front Pole

Central Cathode Thick 
Keeper

IFPC

• Keeper position and thickness changed relative to 
SDWT to try to mitigate elevated wear rates

Results: Keeper Wear

22LDWT: Keeper Upstream of IFPCSDWT: Keeper Coplanar with IFPC

Keeper

Inner Front Pole

Central Cathode

IFPC



• Keeper position and thickness changed relative to 
SDWT to try to mitigate elevated wear rates

• Radially-averaged keeper erosion rates for 
operation at 600 V, 12.5 kW, nominal magnetic 
field:

– SDWT: 80 µm/kh (Coplanar Keeper)
• Rates increase near IFPC and decrease near 

orifice
– LDWT: 13 µm/kh (Upstream Keeper)

• No significant radial variation in erosion rates 
observed

• Trends qualitatively supported by 3D keeper 
surface maps

Results: Keeper Wear
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Orifice IFPC

Keeper Coplanar 
with IFPC

Keeper 
Upstream 
of IFPC

LDWT: Keeper Upstream of IFPCSDWT: Keeper Coplanar with IFPC

Masked Region

Eroded Region
(~200 h)

Eroded Region
(1015 h)

Masked Region



Key Observations:
1) The erosion rate varies 

with radius
– Maxima near channel

2) The erosion rate at 600 
V/1 B is 25% of 300 
V/0.75 B

3) At 300 V, the erosion rate 
at 1.25 B is 1.4x higher 
than at 0.75 B

Results: OFPC Wear
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Discharge 
Channel

Outer 
Thruster 

Edge



Key Observations:
1) The erosion rate varies 

with radius
– Maxima near channel

2) The erosion rate at 600 
V/1 B is 25% of 300 
V/0.75 B

3) At 300 V, the erosion rate 
at 1.25 B is 1.4x higher 
than at 0.75 B

4) OFPC wear appears 
azimuthally asymmetric

– Pre-test surface finish 
different 

– Suggests possible link 
between surface finish 
and erosion rates

Results: OFPC Wear
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Discharge 
Channel

Outer 
Thruster 

Edge

Polished

Unpolished



Key Observations:
1) The erosion rate varies 

with radius
– Maxima near channel

2) The erosion rate at 600 
V/1 B is 25% of 300 
V/0.75 B

3) At 300 V, the erosion rate 
at 1.25 B is 1.4x higher 
than at 0.75 B

4) OFPC wear appears 
azimuthally asymmetric

– Pre-test surface finish 
different 

– Suggests possible link 
between surface finish 
and erosion rates

– Link would also 
explain apparent time 
dependence of IFPC 
erosion rate

Results: OFPC Wear
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Beginning of Test: Surface Polished
Higher Erosion Rates 

End of Test: Surface Roughened
Lower Erosion Rates 



Conclusions

• NASA is committed to a sustainable return of humans to the Moon for long-
term exploration and utilization

– Gateway will enable this sustained cis-lunar presence and provide the capabilities 
necessary to develop and deploy critical infrastructure 

– The first element of the Gateway is planned to be the Power and Propulsion 
Element (PPE), which will launch in 2022 with a high-power solar electric propulsion 
system

• NASA is developing the requisite electric propulsion technologies under the 
Advanced Electric Propulsion Systems contract with Aerojet Rocketdyne

– Risk-reduction activities including the performance of wear tests on TDU-level 
hardware have been completed

– Engineering hardware fabrication is ongoing and development testing planned to 
start in 2019
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Questions?
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