
1 

 

Jet Noise Prediction Comparisons with Scale Model Tests and Learjet Flyover Data 

 
Brenda Henderson, Dennis Huff, Jeff Berton 

NASA Glenn Research Center, Cleveland, Ohio 44135 

 

 

Recent interest in commercial supersonic flight has highlighted the need to accurately predict 

Effective Perceived Noise Levels (EPNL) for aircraft and, since the dominant noise source at 

takeoff will likely be jet noise, specifically jet noise contributions.  The current study compares 

predictions from historical jet-noise models within NASA’s Aircraft Noise Prediction Program 

and scale-model data to measurements made in a Learjet 25 flight test. The noise levels from the 

predictions and scale-model data were below those for the flight data by 2.5 – 3.5, 1 – 2, and 3 – 

5 EPNdB for the SAE model, the Stone Jet model, and the scale-model data, respectively.  Tones 

and broadband haystacks were identified in the flight spectra that are not associated with jet 

noise which increased the flight EPNL by at least 0.5 EPNdB over that computed from spectra 

with the tones and haystacks removed.  The study highlights the need for accurate exhaust 

temperature measurements, aircraft flight position information, and averaging data across a line 

of microphones in flight tests.  For example, a 100o F to 200o F difference in jet exhaust 

temperature is enough to explain the differences between flight, model scale, and prediction 

comparisons. 

 

I. Introduction 

 
     A renewal of interest in commercial supersonic flight has led to an on-going effort by the International Civil 

Aviation Organization (ICAO) Working Group 1/Supersonic Task Group (WG1/SSTG) within the Landing and 

Take-off (LTO) subgroup to develop noise standards and recommended practices (SARPs) for the airport 

environment. In support of this effort, NASA is conducting studies to predict noise for representative supersonic 

aircraft and a range of take-off and landing procedures. The studies have shown jet-noise to be the dominant noise 

source at the lateral and flyover locations and have highlighted the need to accurately predict jet noise for relevant 

exhausts. For the types of studies included in the effort, three approaches are available for jet-noise prediction: 

employing empirical models, scaling data acquired in wind tunnels, and using scaled engine test-stand data from 

similar engines with an added forward flight correction. The current study investigates the first two prediction 

approaches and compares the results to data previously acquired in a Lear 25 flight test.  The flight data are 

compared to scale model data acquired in NASA’s Aero-Acoustic Propulsion Laboratory and predictions using 

empirical models currently available in NASA’s Aircraft Noise Prediction Program (ANOPP)1. The Learjet dataset 

was selected for comparison as the dominant noise source for the aircraft is expected to be jet noise.  The Learjet 

dataset was used previously to quantify the noise reduction associated with the introduction of chevrons. However, 

the initial study was not focused on jet-noise prediction and, therefore, did not include an accurate scale-model of 

the Lear 25 nozzle system or comparisons with empirical models2.  

     Plans for near-term entry-into-service supersonic aircraft appear to be focused on business jets3,4 with 2 or 3 

engines and subsonic overland flight.  The jet flows will likely be fully mixed single streams exhausting from 

turbofan engines for performance and limited to high subsonic to low supersonic speeds to meet airport noise 

requirements.  While the Lear 25 turbojet engines have pseudo secondary streams as a result of NACA scoops and 

vents near the front of the nacelle that draw in cooling air, the secondary streams are likely at very low speeds 

relative to the primary exhaust streams.  The resulting acoustic spectra from scale model tests will be shown to be 

similar to those from a single stream jet over the range of frequencies of interest in this study.  Additionally, the 

flight dataset includes points with high subsonic and low supersonic exhaust speeds making portions of the data 

relevant to future supersonic business jets. 

     The NASA Aircraft Noise Prediction Program contains a number of jet-noise source models including those 

based on SAE 8765, modifications to SAE 8766, and work performed by Stone7,8. The SAE models were developed 

in the 1970s and were based on data available at the time.  Comparisons with flight data10,11 have shown the 

measured levels can be higher than those predicted with the differences being attributed to contamination of the 

flight data by other noise sources and by installation effects10. More recently, the SAE method was found to 

overpredict levels for engines in the 3000 to 6000 lb thrust class when compared to data collected from an engine-
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stand test6.  The engine-stand data were obtained from a turbo-fan engine with a lobed mixer. The lower levels in the 

engine-stand test resulted in a modified SAE model within ANOPP. The original jet-noise model developed by 

Stone7 for single stream jets was based on data available in the 1970s (referred to as Stone 1 here) and is available in 

ANOPP.  Stone later updated the model using data acquired more recently in scale-model experiments and extended 

the model to predict noise for dual-stream jets8.  The newer Stone model, referred to as Stone 2 here, is also 

available in ANOPP.  It will be shown that the SAE, modified SAE, Stone 1, and Stone 2 models produce different 

source distributions for the jet exhausts explored here.  Not included in this study are models developed more 

recently12,13,14 as these intent of the investigation is to apply models currently available within ANOPP. 

     The quantity of interest is the effective perceived noise level (EPNL). However, in this study, spectral shapes and 

levels over the observation angles of interest (those angles contributing to the EPNL calculation) will be investigated 

in addition to the EPNL.  The intent is to fully understand the predictions contributing to the EPNL and how those 

predictions compare to scale model and flight data.  Only mixing noise will be considered in this study.  Models for 

broadband shock noise will not be investigated. 

 

II. Experiments 

 
A.  Flight Tests 

     A flight test was conducted in March 2001 at the Estrella Sailport (located south of Phoenix, Arizona) using a 

Learjet 25 operated by NASA2.  The primary purpose of the test was to verify noise reduction benefits of chevron 

nozzles relative to the baseline nozzles for General Electric CJ610 turbojet engines (see Fig. 1).  Flyover tests were 

done over three days, the first of which was for the baseline nozzles.  During 500-ft. constant altitude, constant 

speed flyovers (see Fig. 2), the left engine was set at the desired power condition while the right engine was throttled 

back to idle.  Only the baseline data are presented here. 

Figure 1.  The baseline nozzle mounted on 

the left engine of the Learjet 25. 

Figure 2.  The flyover of the Learjet 25 with the 

baseline nozzles. 

Figure 3. The ground microphone array and coordinate system. 
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     NASA Langley recorded the 

acoustic data during the flyovers 

using ground microphones.  The 

microphones were arranged in three 

lines along the flight direction (left, 

right and center of the flyover path).  

Figure 3 is a schematic showing the 

microphone numbering system and 

locations relative to the flight path.  

Table 1 shows the position of each 

microphone relative to Microphone 

7, which was the first microphone on 

the center array directly below the 

flight path.  A ½-inch B&K 

microphone was placed flat on a steel 

plate for each microphone position.  

The terrain was mostly dirt with 

sparse vegetation (desert).  Time 

pressure histories were digitally 

recorded with a sample rate of 

25,000 samples per second.  For each 

line of microphones, the pressures 

were time shifted to the lead 

microphone (1, 7, or 15) and 

averaged using the procedure 

described in Ref. 15.  The flight tests 

started at 6:34 am on March 27, 2001 

and ended at 9:56 am.  The 

temperature at Microphone 7 ranged 

from 58.1 to 68.1 F and the 

relative humidity was about 

48%.  The pilot set the engine 

pressure ratio (EPR) to the 

desired power and deployed 

flaps and landing gear as 

appropriate to control the flight 

speed.  The subset of the data 

used in the current study is 

shown in Table 2.  The flaps 

were deployed for all of the runs 

and the landing gear was 

deployed for the data acquired 

at EPR = 1.8 and 2.0.  Several 

runs were not used due to loss 

of signal on the microphones, 

particularly for the left line of 

microphones.  Note that Runs 

121 through 125 use estimates 

for relative humidity based on 

the local temperature.  Engine 

Exhaust Gas Temperatures 

(EGT) were determined in a 

preflight test conducted in 

Cleveland, OH in February 2000.  At that time, EGTs were read from the cockpit gauges for each EPR.  For all 

EPRs, the EGT of the right engine was 54oF to 72o F below that of the left engine.  The approximate jet temperatures 

Table 1 Microphone Locations 

Microphone X Y Z

1 150.03 1000 -6.83

2 299.99 1000 0.36

3 449.89 1000 0.69

4 606.13 1000 0.62

5 750.08 1000 0.98

6 900.17 1000 1.17

7 0 0 0

8 150.03 0 0.48

9 300.13 0 2.03

10 450.65 0 2.08

11 599.96 0 2.09

12 750.3 0 2.27

13 912.71 0 2.61

14 1050 0 2.64

15 150.03 -1000 3.3

16 311.3 -1000 1.9

17 449.91 -1000 3.38

18 599.96 -1000 3.07

19 750.05 -1000 3.59

20 900.15 -1000 3.25

Location of Microphone Relative to Microphone 7 (feet)

Table 2 Flight Test Matrix for Baseline Nozzles 

Engine 

Pressure 

Ratio 

(EPR)

Run 

Number

Approximate 

Jet 

Temperature 

(R)

Landing 

Gear

Ground 

Speed 

(knots)

Temperature 

at 

Microphone 7 

(F)

Relative 

Humidity 

(%)

136 1180 Up 202.7 67.9 46.6

137 1180 Up 206.6 67.7 47.1

138 1180 Up 205.3 67.4 47.5

139 1180 Up 211.1 67.9 46.6

140 1180 Up 205.8 68.1 45.9

123 1257 Down 166.7 61.2 48

124 1257 Down 157.5 60.5 48

125 1257 Down 165.8 61.6 48

133 1257 Down 156.2 66.3 47.6

134 1257 Down 154.3 67.3 47.7

135 1257 Down 166.6 67.3 48.6

121 1374 Down 187.7 61.5 48

122 1374 Down 188.6 61.2 48

128 1374 Down 177.7 64.5 49.6

129 1374 Down 175.6 65.1 49.5

130 1374 Down 174.7 65 50

1.6

1.8

2
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in Table 2 reflect the preflight EGTs for the left engine.  Exhaust Gas Temperatures were not recorded during the 

acoustic flight tests in March 2001. 

     Time pressure histories were analyzed in 0.50 second intervals using a Fast Fourier Transform (FFT).  The 

number of samples for the FFT was 4096, giving a 6.1 Hz bandwidth.  A Hamming periodic window was chosen 

with Welch’s power spectral density (PSD) estimate.  The FFTs acquired from the various microphones along the 

flight path were averaged using time shifted pressure histories.  The time shift was obtained from the aircraft flight 

speed. The narrowband spectra were converted to 1/3-octave and PNL and EPNL were computed using the same 

method employed in ANOPP. 

 

B.  Scale-Model Tests 

     A 0.31 scale factor model of the Learjet nozzle system was designed using relevant nozzle dimensions obtained 

from detailed measurements of the nozzle used in the flight tests.  The leading-edge region of the Learjet nacelle has 

the NACA scoop and two vents shown in Fig. 4.  The air from the scoop and vents exhausts through an outer 

secondary stream.  Both air streams and the slight offset of the secondary nozzle relative to the core nozzle were 

replicated in the scale-model shown in Fig. 5.  The diameter of the core nozzle is 3.59”. 

      The scale-model experiments were performed in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA 

Glenn Research Center (see Fig. 6).  The AAPL is a 66 ft radius geodesic dome treated with acoustic wedges.  The 

AAPL contains the Nozzle Acoustic Test Rig (NATR), which produces a 53 in diameter simulated forward flight 

stream reaching Mach numbers of 0.35 and contains the High Flow Jet Exit Rig (HFJER), a three-stream jet engine 

simulator capable of replicating most commercial turbo-fan engine temperatures and pressures16. 

     The core- and simulated flight-stream conditions in the experiments closely replicated those used in the flight test 

(see Table 1).  The nozzle pressure ratio (NPR), the ratio of the core pressure to the ambient pressure, was set to the 

EPR in Table 1 and the nozzle temperature ratio, the ratio of the ambient temperature to the core temperature, was 

matched to the temperature ratio computed from the approximate temperature in Table 2 and an average ambient 

temperature for the flight tests.  It was not possible to determine the conditions of the secondary flow in the flight 

tests so pressure ratios equal to 1.05, 1.1, and 1.2 were used in the scale-model experiments to determine the impact 

of the secondary flow on the resulting spectra.  The temperature ratio of the secondary stream was set equal to 1.25.  

It is expected that the lowest pressure ratio tested, a pressure ratio that resulted in a flow Mach number equal to that 

of the flight stream, was more representative of the secondary flow in the flight tests than the higher pressure ratios.  

Data were acquired for two nozzle azimuthal angles: one representing the orientation of the nozzle for the flyover 

centerline array and one representing the nozzle orientation for the flyover left sideline array. 

     Acoustic measurements were made with a 24 microphone far-field array located on a 45 foot constant radius arc 

covering polar angles between 45o and 160o, where angles greater than 90o are in the downstream direction relative 

to the nozzle exit.  All data were corrected for atmospheric absorption17 and free-jet shear layer effects18. Data were 

acquired using ¼” Bruel and Kjaer microphones without grid caps, pointed directly at the nozzle exit.  Microphone 

sensitivity and frequency response were applied to all measurements.  The narrowband wind tunnel data are 

presented as power spectral density in emission coordinates on a one-foot lossless arc.  For comparisons with jet-

noise prediction models within ANOPP, data are presented as Doppler shifted one-third octave sound pressure levels 

on a one-foot lossless arc to be consistent with the source model representations within ANOPP.  For comparisons 

with flight data, a scale factor of 3.21 is applied to the data and comparisons are made from the scaled data 

propagated with the ANOPP propagation module19.  Perceived Noise Levels (PNLs) and EPNLs are computed with 

ANOPP. 
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Microphone 

Array 

Figure 6.  The Aero-Acoustic Propulsion 

Laboratory (AAPL) at the NASA Glenn 

Research Center. 

HFJER 

Figure 4. The Learjet nozzle used in the flight. 

Figure 5. The nozzle system used in the scale model 

tests. 
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III. Results 

 
     Calculations of effective perceived noise levels showed that computing EPNL with emission angles between 

roughly 70o and 150o resulted in a value that was within 0.5 EPNdB of the value obtained when using all angles within 

the required 10 dB down point on the PNL. Therefore, spectral comparisons with jet-noise source models and flyover 

data will only be made for angles within this range. Additionally, all EPNL calculations did not use tone corrections 

as tones were present in the flight data and these tones were not associated with jet noise.  The focus of the investigation 

was jet noise. 

 

A. Comparisons with Scale Model Data 

     The narrowband data for an NPR of 2.0 are shown in Fig. 7 for a secondary nozzle pressure ratio (NPRs) of 1.05. 

There are no indications of broadband shock noise at any emission angle. As such, comparisons between scale-

model data and jet-noise predictions models within ANOPP will 

only use mixing noise models. 

     The narrowband spectra acquired at NPR = 1.8 and NPRs = 

1.05 are shown in Fig. 8 for six different acquisitions and two 

different azimuthal angles.  The data repeatability is quite good 

with the exception of tones that occurred for one installation at 

small angles to the inlet jet axis [see Fig. 8 (a)].  These tones 

appear to be associated with a particular installation of the nozzle 

system.  The azimuthal nozzle clocking angle did not impact the 

acoustic radiation likely due to the fact that there was little 

secondary-stream flow and the offset was reasonably small.  The 

EPNLs computed with spectra containing tones were the same as 

those computed with tone-free spectra.  The results in Fig. 8 are 

representative of those obtained at other jet operating conditions. 

     The narrowband spectra for NPR = 1.6 and 1.8 with 1.05 < 

NPRs < 1.20 are shown in Figs. 9 and 10, respectively.  

Increasing NPRs from 1.05 to 1.10 slightly decreases high 

frequency acoustic radiation at all emission angles for NPR = 

1.60 and slightly decreases high frequency acoustic radiation in 

the aft quadrant for NPR = 1.80. Increasing NPRs from 1.10 to 1.20 increases acoustic radiation at low frequencies 

for all observation angles and both core nozzle pressure ratios.  Results for NPR = 2.0 were similar to those for NPR 

= 1.60.  

 

 

 

Figure 7. The narrowband spectra 

acquired at NPR = 2.0 and NPRs = 1.05. 

Figure 8. The narrowband spectra acquired at NPR = 1.8 and NPRs = 1.05 for emission angles equal to (a) 

70o, (b) 110o, and (c) 150o. Data from six separate acquisitions are included in the plots.  The data were 

acquired at two different azimuthal angles. 

(a) (b) (c) 
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     The free-jet shear layer correction18 can be used with the sound source assumed to be at the nozzle exit or 

distributed.  The distributed source in Ref. 18 is based on data acquired from jets tested statically.  For the 

implementation used here, the source distribution in Ref. 18 has been slightly modified by an assumed potential core 

length. The same potential core length was used for all operating conditions. Comparisons were made between the 

data corrected for the sources at the nozzle exit (referred to as NATR Exit), distributed sources using the assumed 

potential core length (referred to as NATR Medium), distributed sources using a potential core length twice that for 

NATR Medium (referred to as NATR Long), and distributed sources with a potential core length equal to one-half 

that of NATR Medium (referred to as NATR Short).  The results are shown in Fig. 11 for the NPR = 1.8 and NPRs = 

1.05.  The data have been averaged.  For small and nearly broadside angles to the jet [see Figs. 11 (a) and (b)] the 

peak levels for spectra with the sources assumed at the nozzle exit are lower than those for the distributed sources.  

At small angles to the jet [see Fig. 11 (a)] mid-frequency levels are slightly impacted by the selection of potential 

core length.  In the peak jet-noise direction [Fig. 11 (c)], the peak level for NATR Exit is higher than those for the 

data corrected with distributed source.  The potential core length only impacts acoustic levels at high frequencies.   

 

 

 

 

 

Figure 10. The narrowband spectra acquired at NPR = 1.8 and NPRs = 1.05, 1.10 and 1.20 for emission 

angles equal to (a) 70o,  (b) 110o, and (c) 150o. 

(a) (b) (c) 

Figure 9. The narrowband spectra acquired at NPR = 1.6 and NPRs = 1.05, 1.10 and 1.20 for emission 

angles equal to (a) 70o,  (b) 110o, and (c) 150o. 

(a) (b) (c) 
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     A comparison between the measured data and SAE, Stone 1, and Stone 2 predictions are shown in Fig. 12.  For 

Stone 2, only the intermediate and large scale sources have been selected in ANOPP.  Inclusion of Stone 2 small 

scale sources results in significant overpredictions of high frequency levels relative to the measured values. The 

single stream option within Stone 2 was selected for the predictions as the secondary stream had a very low pressure 

and flow rate in the experiments.  The modified SAE predictions are not shown as the levels for modified SAE are 1 

dB below those for SAE at all angles and frequencies.  Only the data for NATR Exit and NATR Medium have been 

included in the Figure.  For emission angles in the forward arc [Fig. 12 (a)], Stone 1 and Stone 2 spectra are close to 

the NATR Exit and NATR Medium spectra, respectively. The highest spectral levels occur for the SAE prediction. 

For angles near the broadside of the jet [see Fig. 12 (b)], Stone 1 and NATR Exit produce similar spectra while 

spectra from SAE and NATR Medium are quite similar.  Near the peak jet-noise angle [Fig. 12 (c)], peak levels for 

Stone 1, SAE, and NATR Exit are similar and the spectral shapes of SAE and NATR Exit are similar.  The slight 

differences in the SAE and NATR Exit spectra near 3100 Hz may be due to the secondary stream in the nozzle 

system used in the experiments. For emission angles in the aft quadrant, Stone 2 produces the highest peak levels 

with a frequency that is slightly higher than those from the measurements and other predictions.  A comparison 

between the predicted and measured spectra for NPR = 1.6 in Fig. 13 show similar trends to those for NPR = 1.8 

although the difference in the peak levels relative to the measure data for SAE in the forward quadrant and for Stone 

2 in the peak jet-noise direction are slightly great than those at NPR = 1.8.  The comparisons between measured and 

predicted spectra at NPR = 2.0 in Fig. 14 once again shows similar trends to those for NPR = 1.8 although the 

comparisons between Stone 1 and measured data are not as good in the forward arc and the peak jet-noise direction 

as those for NPR = 1.8.   
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Figure 11. The one-third octave spectra acquired at NPR = 1.8 and NPRs = 1.05 for emission angles 

equal to (a) 70o,  (b) 110o, and (c) 150o.  The different source distribution assumptions assumed for the 

shear layer correction are indicated in the legend. 

(a) (b) (c) 

Frequency (Hz) 
102 103 104 105 102 103 104 105 

Frequency (Hz) Frequency (Hz) 
102 103 104 105 

Figure 12. The one-third octave spectra from ANOPP predictions and measurements at NPR = 1.8 for 

emission angles equal to (a) 70o, (b) 110o, and (c) 150o.  The NATR spectra are from averaged data and 

acquired at NPRs = 1.05. 

(a) (b) (c) 
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B.  Comparisons with Flight Data 

     The flight data were compared with predictions using source models within ANOPP and scale-model data.  The 

source levels were propagated using the atmospheric conditions recorded for the flight test.  A hard surface was 

assumed for the ground reflections, which is reasonable for microphones on steel plates surrounded by dirt terrain.  

The SAE lateral attenuation method was not used for the left and right microphone arrays as a better comparison 

was achieved between flight data and predictions without attenuation. 

Figure 13. The one-third octave spectra from ANOPP predictions and measurements at NPR = 1.6 for 

emission angles equal to (a) 70o, (b) 110o, and (c) 150o.  The NATR spectra are from averaged data and 

acquired at NPRs = 1.05. 

(a) 

102 103 104 105 
Frequency (Hz) Frequency (Hz) 

102 103 104 105 
Frequency (Hz) 

102 103 104 105 

(b) (c) 

102 103 104 105 
Frequency (Hz) 

102 103 104 105 
Frequency (Hz) 

102 103 104 105 
Frequency (Hz) 

Figure 14. The one-third octave spectra from ANOPP predictions and measurements at NPR = 2.0 for 

emission angles equal to (a) 70o, (b) 110o, and (c) 150o.  The NATR spectra are from averaged data and 

acquired at NPRs = 1.05. 

(a) (b) (c) 
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     There were no aircraft position data 

available from the flight tests, so the 

alignment between predictions and the 

flyover data had to be approximated.  Since 

there were compressor tones in the flyover 

data, it was possible to use the Doppler shift 

to estimate when the aircraft passed overhead.  

A sample spectra is shown in Fig. 15. The 

number of samples for the FFT was increased 

to 16384, giving a bandwidth of 1.53 Hz to 

make the tones easier to find in the 

narrowband spectra.  Figure 16 shows 

contours of SPL for frequency versus time for 

a representative flyover condition.  There are 

several tones between 100 and 300 Hz where 

a rapid decrease followed by a leveling out of 

frequency can be observed between 20 and 30 

seconds.  A marker in the Figure locates the 

approximate midpoint of the flyover 

event.  The ANOPP predictions were 

time-shifted to align with Learjet 

flyover data using the midpoint 

flyover event.  

     The flyover data obtained from the 

center array for EPR = 1.8 are shown 

in Fig. 17.  While the data were 

acquired at slightly different ambient 

conditions and slightly different 

ground speeds (see Table 2), the data 

repeatability is good for flyover times 

between 20 and 30 seconds.  There is 

a slight spread in the data for flight 

times greater than 30 seconds which 

are within the 10 dB down point and, 

therefore, contribute to EPNL 

calculations. The one-third octave and 

narrowband data for points 1, 2, and 3 

indicated in Fig. 17 are shown in Fig. 

18.  The tones and broadband 

“humps” in the data are not associated with jet noise and, therefore, cannot be predicted by the jet-noise models in 

ANOPP or by the scale-model data.  The greater spread in the PNLs for flight times greater than 30 seconds appears 

to be associated in part with differences in the broadband hump shown in the narrowband data of Fig. 18 (c).  

Narrowband and one-third octave comparisons at the peak PNL [Fig. 18 (b)] are quite good between the different 

runs. For one of the runs (Run 135) the tones and humps indicated in Fig. 18 were removed and the resulting one-

third octave spectra on the left side of Fig. 18 were obtained. The tone removal was an effort to determine the impact 

of the tones and humps on the resulting EPNLs which will be discussed later. The tones were removed by linearly 

interpolating the acoustic levels between data points on the lower and upper frequency of the tone or broadband 

hump.  For this exercise, the sound pressure levels were replaced with linearly interpolated levels for the same 

frequency range at all flight times. It is possible that the tone removal procedure did not fully account for the impact 

of the tones and humps on the resulting spectra and, therefore, the resulting EPNL for the tone removed data can be 

expected to be somewhat higher than those for the predictions. 

     The PNLs for the flight data taken with the center array with EPR 1.8 and ANOPP predictions using the SAE, 

Stone 2, and scale-model data for NPR = 1.8  are shown in Fig. 19.  Tones have not been removed from the flight 

data (Run 134). The scale-model data are averaged spectra for NPRs = 1.05. The peak PNL level in Fig. 19 for the 

flight data is close to that of Stone 2 and is higher than those predicted by SAE and the scale-model data. The PNL 

levels for SAE and the scale model data are similar.   

101 102 103 104 

Figure 15. The narrowband flyover spectra acquired at the 

indicated times for the center microphone and EPR = 1.8. 

Figure 16. Contours of Learjet flyover SPL as a function of 

frequency and time for EPR = 1.8 for the center microphones. 
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     The spectra corresponding to points 1, 2, and 3 in Fig. 19 are shown in Fig. 20. The tone removed spectra for Run 

134 as well as an SAE prediction with a temperature increased by 100o F (designated SAE + 100) have been 

included in the right column of Fig. 20. The predictions for SAE with the increased temperature have been included 

to determine the impact of temperature as the temperatures where not recorded during the flyover tests. At 26 

seconds [Fig. 20 (a)] SAE, Stone 1, NATR Medium, and Run 134 spectra compare reasonably well except at high 

frequencies.  Peak levels for NATR Exit are slightly lower than those for the flight data and predictions.  The peak 

levels at the peak PNL [Fig. 20 (b)] are similar for Stone 2 and Run 134 while SAE and NATR levels are rough 5 

dB below that for Run 134.  The peak level for SAE+100 is slightly less than 2 dB below that for Run 134 Tone 

Removed.  At 31.5 seconds [Fig. 20 (c)] where the flyover data has a significant hump in the narrowband spectra 

[see Fig. 18 (c)], the peak levels for Stone 2, SAE, and NATR are well below that for Run 134. The tone removed 

flyover data has a peak level that is roughly 3 dB above that for SAE + 100.  It should also be noted that the 31.5 

second flyover time corresponds to a 158o emission angle, an angle that has a reasonably large shear layer correction 

for data acquired in a free-jet scale-model facility. 

     The PNLs for EPR = 1.8 and the left array are shown in Fig. 21.  The spread in the data at the peak PNL is 

greater than that associated with the center microphone array.  The increased spread in the data is due to the smaller 

number of data samples that were available for averaging spectra relative to that for the center array.  When a similar 

number of samples were used for the center array, the spread in peak PNL levels were similar to those in Fig. 21.  

The impact of the number of samples on the EPNL will be discussed later. 

     The PNLs for EPR = 1.6 and the centerline array as well at the ANOPP predictions for NPR = 1.6 are shown in 

Fig. 22.  Stone 2 slightly underpredicts peak PNL.  The peak PNL level for SAE is closer to that for Stone 2 and for 

EPR = 1.8.  The NATR data produces the lowest peak PNL levels. 

     The spectra corresponding to the points 1, 2, and 3 in Fig. 22 are shown in Fig. 23.  The one-third octave spectra 

for the flight data, SAE, Stone 2, and the NATR data are in the right column and the narrowband sound pressure 

levels for the flight data are in the left column. Comparing the narrowband data of Figs. 23 (a) and 18 (a) shows that 

the hump in the data at 16.5 seconds for EPR = 1.6 is not as elevated relative to the broadband levels as that at 26 

seconds for EPR = 1.8 due to increases in the broadband levels with the increased jet velocity.  The hump that was 

present at 31.3 seconds for EPR = 1.8 [Fig. 18 (c)] is absent from the spectra at 21 seconds for EPR = 1.6 [Fig. 23 

(c)] possibly due to the landing gear being deployed for EPR = 1.8 and not for EPR = 1.6. The emission angles were 

similar for Figs. 18 (c) (158o) and 23 (c) (154o).  Stone 2 underpredicts and SAE overpredicts the broadband peak 

spectral levels at 16.5 seconds.  The peak levels for NATR Medium are close to the broadband peak levels.  At the 

peak PNL flyover time, SAE and NATR produce similar peak levels which are well below those of the flight data.  

Stone 2 produces levels that are close to the flyover peak levels.  At 21 seconds, SAE and NATR Exit spectra are 

similar and have peak levels well below those of the flight data.  Tones were not subtracted from the flight data at 

EPR = 1.6 and there is some evidence of a tone at 21 seconds in the flight data. 

     The PNLs for EPR = 2.0 and the centerline array along with the ANOPP predictions for NPR = 2.0 are shown in 

Fig. 24. The corresponding spectra are shown in Fig. 25. The agreements between the predicted and measured 

spectra at 22 seconds and at the peak PNL flyover time are similar to those at 26 seconds and at the peak PNL time, 

respectively, for EPR = 1.8.  The hump in the narrowband data at 28 seconds is similar to that observed in the data at 

EPR = 1.8.  Note that the landing gear was deployed for the EPR = 1.8 and 2.0 flyovers.  Stone 2 produces levels 

that are closest to the measured data for 28 seconds although the data clearly contains noise components not related 

to jet noise. 
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Figure 17. The flyover PNLs acquired with the center array for an EPR = 1.8. 

Frequency (Hz) 
101 102 103 104 

Frequency (Hz) 
101 102 103 104 

Figure 18. The one-third octave spectra (left) and narrowband spectra (right) for the flyover data (center array) 

acquired at EPR = 1.8.  The data are for (a) 26 sec, (b) 28.5 sec, and (c) 31.5 sec (see 1, 2, and 3 in Fig. 18). 

(a) 

(b) 

(c) 

Removed 

Removed 
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Figure 19. The PNLs at EPR = 1.8 for the flight data (center array) and NPR = 1.8 for the ANOPP predictions. 

Frequency (Hz) 
101 102 103 104 101 102 103 104 

Frequency (Hz) 

(a) 

(b) 

(c) 

Figure 20. The one-third octave spectra for flyover Run 134 (center array) at EPR = 1.8 and ANOPP predictions 

at NPR = 1.8.  The data and predictions are for (a) 26 sec, (b) 28.5 sec, and (c) 31.5 sec (see 1, 2, and 3 in Fig. 20). 
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     The effective perceived noise levels (EPNL) were computed for the predictions, scale-model data, and flight data.  

The values were obtained for a 500’ constant altitude flyover over the centerline array at the conditions identified in 

the flight test matrix (Table 2).  The EPNLs were also computed from the data acquired with the left and right 

microphone arrays.  Note that the 500’ flyover does not represent a takeoff trajectory and, therefore, the values 

should not be compared to certification levels.  

     The impact of the shear layer correction assumptions on EPNL is 

summarized in Table 3. The results show that the source distribution 

assumptions within the shear layer correction impact the EPNLs by no 

more than 0.2 EPNdB for all of the runs in Table 3.   

     Figure 26 (a) shows the EPNL noise levels for the center microphone 

flyover. The difference in EPNL of the predictions and the NATR data 

relative to the flight data are shown in Figure 26 (b).  Positive values 

mean the EPNL is lower than the flight data.  For all runs and EPRs, the 

flight EPNLs are higher than the levels for SAE, Stone 2, and NATR 

Exit by 1 to 5 EPNdB.  The Stone Jet 2 prediction are the closest to the 

flight data and are within 1 to 2 EPNdB of the flight data.  The NATR 

data is furthest from the flight data, with differences ranging from 

approximately 3 to 5 EPNdB. The average of the difference in the flight 

EPNL and NATR EPNL at each EPR decreases with increasing EPR. 

     Figure 27 and Figure 28 show the results from the left and right microphone measurements, respectively.  The 

predictions and NATR data are identical from left to right due to assumed symmetry, where the flight data varies as 

measured.  Since the left engine on the Learjet was used for the tests and the right engine was at idle, there could be 

differences from installation effects.  However the results do not show a preferred direction for propagation due to 

installation effects.  Furthermore, the differences in the flight EPNL are as high as 2 EPNdB between the left and 

right measurements for the same flyover. 

     Several studies were done to understand the impact of the tones in the flyover data on the resulting EPNL.  The 

studies focused on the EPR 1.8 data.  First, the flight data contains tones that are probably from the compressor of 

the turbojet engines.  They were observed as the Learjet approached the microphones and were manually subtracted 

from the acoustic spectra at all flyover times.  For Run 134, the EPNL reduced by 0.2 EPNdB.  Secondly, a “hump” 

(see Fig. 18) was removed and further reduced the EPNL by an additional 0.3 EPNdB.  So obvious non-jet portions 

of the spectra reduced the EPNL by 0.5 EPNdB.  It should be noted that the tone subtraction did not entirely remove 

the impact of non-jet-noise sources on the modified spectra shown by the pink curves in Fig. 18. 

     The EPNL was also found to be impacted by the number of microphones included in the flyover averaging.  

There were 8 microphones in the center array and only 6 in the left and right arrays.  In several cases, one 

microphone for the left and right array was not functioning and removed from the averaging.  Runs where more than 

one microphone was not functioning in the array were not included.  To investigate the impact of fewer microphones 

Figure 21. The flyover PNLs acquired with the left array for an EPR = 1.8. 

EPR/NPR
Flyover 

Run

NATR 

Exit

NATR 

Medium

139 92.6 92.8

140 92.7 92.8

123 100.5 100.6

133 100.9 100.9

134 100.9 101

135 100.6 100.8

121 104.5 104.6

130 105.0 105.1

1.6

1.8

2.0

Table 3. EPNLs for the NATR 

Data 
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in the array, a study was done with the center microphones where the number was reduced from 8 to 5.  Then the 

EPNL was computed and found to change by 1 EPNdB.  So the number of microphones included in the flyover 

arrays is an important factor for data quality and reducing the uncertainty.  
     Another unknown from the Learjet data are the actual test conditions for the engine from each run.  The engine 

temperatures and EPRs were recorded from the cockpit gauges during a pre-flight test in Ohio.  The EPR of the left 

engine and the desired flight speed was matched as close as possible during the flyover tests in Arizona, but engine 

temperatures were not recorded.  The SAE prediction model was used to investigate the impact of increasing the 

engine temperature since the SAE predictions were predominantly lower than the flight data and a higher 

temperature will increase the jet noise due to increased jet velocity.  It was determined that the EPNL for the center 

microphones can increase by 1.5 EPNdB for each 100o F increase in jet exit temperature for an NPR = 1.8.  The 

preliminary runs conducted in Ohio indicated 54o F to 72o F differences between the left and right engines running at 

matched EPR.  Therefore there is expected uncertainty associated with determining the actual engine temperatures 

during the flight test.  This is likely one contributing factor for the flight data EPNL being consistently higher than 

the NATR data and prediction methods. 

 

IV. Conclusions 
 

     System level noise assessments have been made comparing empirical prediction methods, model scale test data 

and flight data using a Lear 25 aircraft.  Jet noise was the primary emphasis of the work with a goal of applying it to 

future commercial supersonic transport aircraft.  A primary objective of the work was to determine the uncertainty 

associated with noise metrics such as effective perceived noise level.  The results show that the flight data is 

consistently higher in noise levels compared to both predictions and the scaled model test data.  This is consistent 

with findings during the 1970s when predictions models such as the SAE method were developed. The noise levels 

from the predictions and scale-model data were below those for the flight data by 2.5 – 3.5, 1 – 2, and 3 – 5 EPNdB 

for the SAE model, the Stone Jet model, and the scale-model data, respectively.   

     The differences between the flight data EPNLs and those from the predictions and scale model data were 

investigated.  A concern with the flight data was the lack of information about the engine exhaust temperatures and 

the aircraft position.  A 100o to 200o F difference in exhaust gas temperature would be enough to explain the 

underprediction of the model data and empirical prediction methods.  The aircraft position uncertainty contributes to 

difficulties comparing flyover spectra but not the EPNL assessments.  Even though the turbojet powering the Lear 

25 is jet noise dominant, there is evidence of compressor tones from the inlet and possibly airframe noise sources in 

the aft direction that contribute to EPNL calculations and make comparisons challenging. 

     Analysis of the flyover data showed the importance of using a line of microphones and averaging the acoustic 

pressures using a time shift.  This was shown to impact the EPNL by as much as 1 EPNdB.  The averaging process 

provided sufficient resolution to compute narrowband spectra, which was used to estimate the aircraft position from 

the Doppler shift of the tones. 

     The scale-model experiments used a two-stream nozzle replicating the features of the Lear 25 nozzle system.  

The flow rates for the secondary stream were assumed to be low and the NPR was set equal to roughly that of the 

flight stream.  Increasing the NPR of the secondary stream slightly (from 1.05 to 1.10) had little impact on the 

acoustic spectra. The source distribution assumptions in the shear layer correction slightly impacted spectral shape 

and peak radiation angle but did not have a significant impact on EPNLs.  Levels in the peak jet-noise direction 

compared reasonably well with the SAE model and were consistently below those for Stone 2. 

     There are significant differences between the various empirical jet-noise prediction methods included in 

ANOPP.  The Stone 2 predictions came the closest to agreeing with flight data.  The SAE method provided 

reasonable agreement with the NATR data.  Due to the uncertainty in engine conditions during the flight test and the 

tones present in the spectra, it is difficult to assess which method is really better for this application.  Additional 

work is required to identify the additional noise sources and estimate their contribution to the EPNL as well as 

quantify the differences in measured levels from the dual-stream nozzle configuration used here and those from a 

single stream nozzle. 
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Figure 22. The PNLs at EPR = 1.6 for the flight data (center array) and NPR = 1.6 for the ANOPP predictions. 

Frequency (Hz) 
101 102 103 104 101 102 103 104 

Frequency (Hz) 

Figure 23. The one-third octave (left) and narrowband (right) spectra for flyover Run 139 (center array) at EPR = 

1.6. The ANOPP predictions at NPR = 1.6 are shown in the left column.  The data and predictions are for (a) 16.5 

sec, (b) 18.5 sec, and (c) 21 sec (see 1, 2, and 3 in Fig. 23). 

(a) 

(b) 

(c) 
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Figure 24. The PNLs at EPR = 2.0 for the flight data (center array) and NPR = 2.0 for the ANOPP predictions. 

101 102 103 104 
Frequency (Hz) 

101 102 103 104 
Frequency (Hz) 

(a) 

(b) 

(c) 

Figure 25. The one-third octave (left) and narrowband (right) spectra for flyover Run 139 (center array) at 

EPR = 2.0. The ANOPP predictions at NPR = 1.6 are shown in the left column.  The data and predictions are 

for (a) 22 sec, (b) 24.5 sec, and (c) 28 sec (see 1, 2, and 3 in Fig. 25). 
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Exit 

(a) 

Figure 26. The EPNLs computed for the flyover data measured by the center microphone array, NATR Exit 

data, SAE predictions, and Stone 2 predictions in (a) and the difference in the predicted and flyover EPNLs in 

(b). 

(b) 
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(a) 

(b) 

Figure 27. The EPNLs computed for the flyover data measured by the left microphone array, NATR Exit data, 

SAE predictions, and Stone 2 predictions in (a) and the difference in the predicted and flyover EPNLs in (b). 
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(a) 

(b) 

Figure 28. The EPNLs computed for the flyover data measured by the right microphone array, NATR Exit data, 

SAE predictions, and Stone 2 predictions in (a) and the difference in the predicted and flyover EPNLs in (b). 
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