

# A global search for aerosol-cloud interaction signals using Cloud Regimes

#### Lazaros Oreopoulos

#### Climate and Radiation Laboratory NASA-GSEC

Acknowledgements: Nayeong Cho and Dongmin Lee

#### **Motivation and approach**

- Interpretation of aerosol-cloud interactions from space is difficult.
- How to separate aerosol from all other effects on clouds?
- Nevertheless, apparent systematic relationships can perhaps be diagnosed at near-global scales
- Breakdown by "cloud regime" (CR), a cloud class representative of similar cloud conditions, may help streamline the analysis
- How can regimes be defined?
  - We have previously used CRs from passive observations (MODIS) defined as having alike CTP-COT histograms
  - Should pose <u>some</u> constraint on meteorological conditions

#### **MODIS Joint CTP-COT histograms**



#### Courtesy of Jackson Tan

#### **MODIS Collection 6 Cloud Regimes (CRs)**





#### Radiation/Precipitation signals we are searching for as AOD increases (Classic Paradigms)

| (ice and mixed CRs, CR1-CR5, CR12) (liquid CRs, CR6-CR11) (liquid CRs, CR6-CR11) | Invigoration                       | First indirect effect (FIE) | Second indirect effect (SIE) |
|----------------------------------------------------------------------------------|------------------------------------|-----------------------------|------------------------------|
|                                                                                  | (ice and mixed CRs, CR1-CR5, CR12) | (liquid CRs, CR6-CR11)      | (liquid CRs, CR6-CR11)       |

#### "Conventional" paradigms (have been under scrutiny)

- CF increases
- CTP decreases (CTH increases)
- COT increases
- CRE\_SW and CRE\_LW increase
- PR and POP increases

- LWP constant
- CER decreases
- COT increases
- CRE\_SW increases

- PR and POP decrease
- CF increases
- LWP increases
- COT increases
- CRE\_SW and CRE\_LW increase



#### Local sensitivities, methodology

For each grid cell calculate the sensitivity (S<sub>CAQ</sub>) of an <u>afternoon</u> cloud-affected quantity (CAQ) to morning AOD:

 $S_{CAQ} = \frac{dln(CAQ)}{dln(AOD)}$ 



- Slope of linear regression of *lnCAQ vs. lnAOD separately for each* group ("ice", "mixed", "liquid") of <u>morning</u> CRs (separate regression for each CR12 subregime)
- Each point in the scatterplot represents a distinct morning CR occurrence.
- We do not care what afternoon CR the CAQ corresponds to



- Is AOD appropriate?
  - AI=AOD×AE is not always available (MERRA2 and MODIS-land)
  - Strictly speaking, CCN(z)/IN(z) are most appropriate
- Aerosol in the neighborhood of clouds problematic
  - Sampling issue for MODIS
- Time delay between Terra and Aqua vs timescale of interaction
- Meteorological influences
  - How much do CRs constrain?
  - Have looked into this, will not show today

#### Some examples



Gray: Fewer than 5 points available

Yellow shading: Failed F-test for goodness of fit at 95% confidence level.





#### Sensitivity signs, MODIS and MERRA-2 AOD

| MODIS<br>AOD | Ice<br>(CR1 – CR3) | Mixed<br>(CR4-CR5) | Liquid<br>(CR6– CR11) | CR12-A     | CR12-B     | CR12-C     | MERRA<br>AOD | Ice<br>(CR1 – CR3) | Mixed<br>(CR4- CR5) | Liquid<br>(CR6- CR11) | CR12-A     | CR12-B     | CR12-C     |
|--------------|--------------------|--------------------|-----------------------|------------|------------|------------|--------------|--------------------|---------------------|-----------------------|------------|------------|------------|
|              | Ocean Land         | Ocean Land         | Ocean Land            | Ocean Land | Ocean Land | Ocean Land |              | Ocean Land         | Ocean Land          | Ocean Land            | Ocean Land | Ocean Land | Ocean Land |
| CF           | ++.                | ++                 | ++                    | ++         | ++         | ++         | CF           | ++                 | ++                  | ++                    | ++         | ++         | ++         |
| СОТ          | ++.                | =+                 | ++                    | ++         | ++         | ++         | COT          | ++                 | ++                  | ++                    | ++         | ++         | ++         |
| CER          |                    | ++                 | =+                    | ++         | ++         | ++         | CER          |                    |                     |                       | ++         | ++         | +=         |
| СТН          | ++.                | ++.                | ++                    | ++         | ++         | ++         | СТН          | ++                 | ++.                 | ++                    | ++         | ++         | ++         |
| SW<br>CRE    | ++.                | ++                 | ++                    | ++         | ++         | ++         | SW<br>CRE    | ++                 | ++                  | ++                    | ++         | ++         | ++         |
| LW<br>CRE    | ++                 | ++                 | ++                    | ++         | ++         | ++         | LW<br>CRE    | ++                 | ++                  | ++                    | ++         | ++         | ++         |
| Precip * > 0 | ++                 |                    | ++                    | ++         | ++         | ++         | Precip * > 0 | +=                 | +=                  | ++                    | +=         | +=         | ++         |

Shades or red: Consistent with invigoration Shades of blue: Consistent with FIE/SIE

Lighter shades indicate poorer sampling



#### $S_{PR} > 0 \& S_{CF} > 0 \& S_{CTH} > 0 \& S_{COT} > 0 \& S_{CRE} > 0$

#### **Invigoration (Ice CRs)**

Both MERRA and MODIS AOD MODIS only MERRA only



 $S_{CF} > 0 \ \& \ S_{CTH} > 0 \ \& \ S_{COT} > 0 \ \& \ S_{CRE} > 0$ 



 $S_{CF} > 0 \& S_{COT} > 0 \& S_{CRF} > 0$ 

#### **Take-home messages**

- A Regime-based approach is promising for *diagnosis* of aerosol-cloud-precipitation interactions at global scales
- This type of global analysis (most extensive ever?) will *not* capture nuances and full range of interactions, but will give a robust overall picture
- Morning aerosol vs afternoon cloud is possible with Terra-Aqua and MERRA2
  - Aerosol sampling limitations due to cloud presence can be overcome with MERRA2
  - MERRA2 can also assist with incorporating meteorological influences
  - MODIS-MERRA2 result comparison perhaps can tell us about result robustness
- Most results consistent with paradigms, especially for liquid CRs
  - Precipitation is the most noisy and inconclusive
- See Oreopoulos et al. JGR (2017) as a starting point; new paper in preparation.

### **Questions?**

## **Additional Slides**



#### Sampling when cloudy



AŎD





(a) + (b) MODIS AOD with MERRA2-filled





