

Dynamic RPS Path to Flight

Nuclear and Emerging Technologies for Space February 27, 2019

> Salvatore Oriti¹ & Paul Schmitz² ¹NASA Glenn Research Center ²Vantage Partners Thermal Energy Conversion Branch

www.nasa.gov

Dynamic Energy Conversion

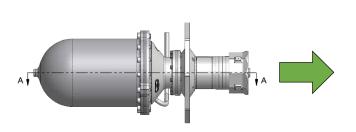
Strong case for use in RPS-powered science missions

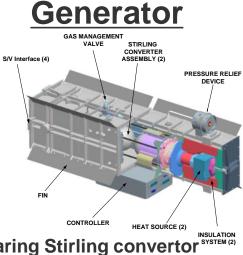
- Wear mechanisms can be eliminated
- Higher thermal-to-electric efficiency (up to 40%)
- Lower waste heat to output power ratio
- No conversion device degradation
- Low generator power decline (due to fuel decay only)
- Same convertor usable by different mission types
- Extensible to high power levels

Design life supported by flight-relevant convertor operation:

Project & Provider	Test Article	Years of Operation (Cumulative)	ration Status			
	TDC #13*	13.2	On-going			
SRG-110	TDC #14	12.0	Shutdown for inspection			
Infinia, Corp.	TDC #15	12.3	On-going	Flexure		
	TDC #16	12.3	On-going			
	SES #2**	1.0	On-going			
	ASC-0 #3**	9.0	On-going			
	ASC-E3 #4**	3.9	On-going			
ASRG Sunpower, Inc.	ASC-E3 #6**	3.0	On-going	Cas		
	ASC-E3 #8	2.6	On-going	Gas		
	ASC-E3 #9	2.3	On-going			
	ASC-L**	4.8	On-going			

Cumulative Per-Convertor Runtime as of February 2019 *Current world-record holder for maintenance-free heat engine runtime **Have undergone launch-vibe portion of life certification

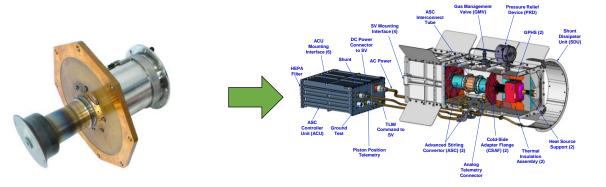



DRPS Historical System Development

SRG-110 (2001 to 2006)

- Engineering unit assembly initiated
- ~114 W_e output
- Infinia's Technology Demonstration Convertor (TDC)
- 2 Pu-238 GPHS modules
- Overall efficiency = 23%
- Developed during 2001 to 2006 timeframe

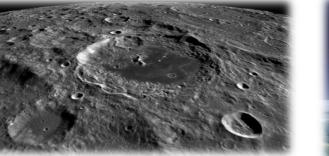
Convertor



SRG110, using flexure-bearing Stirling convertor SYSTEM (2) (image credit : Lockheed Martin)

ASRG (2006 to 2013)

- Qual unit assembly initiated
- ~140 W_e output
- Sunpower's Advanced Stirling Convertor (ASC)
- 2 GPHS modules
- Overall efficiency = 28%
- ~4 W_e/kg
- Developed during 2006 to 2013 timeframe



ASRG, using gas-bearing Stirling convertor (image credits : Sunpower, Lockheed Martin)

DRPS Requirements (Draft)

- Goals make generator designs applicable to a wide range of missions
- Derived from Surrogate Mission Team input

Item	Requirement				
Life	17 years (3 storage + 14 mission)				
Efficiency	≥ 20 %				
Specific Power	≥ 2 W _e /kg				
Fault tolerance	Capable of at least 1 convertor failure				
Degradation	< 1.3 % per year				
Mission Environments	Deeps space, Lunar, Titan, Europa, Enceladus				
Structural Dynamics Environments	Launch vibe 20g static acceleration				
Radiation	300 krad				
Size	Fits in DOE shipping container				

Lunar (Far side & South Aitken Basin)

Europa

Titan

DRPS Notional Schedule

	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
Dynamic Power Convertor Development												
DPC Designs Available	<u>}</u>											
Convertor Analysis												
Convertor Risk Reduction		F	+									
Convertor Prototypes Delivered		<u> </u>										
Convertor Testing				Extend	ed Operatio	on						
Convertor TRL 6 Achieved												
DRPS Flight Development												
Conversion Technology Decision Gate		\bigtriangleup										
Initiate Qual Unit Development			Contract Av	ward								
Preliminary Generator System Design				PDR								
Final DRPS Design						DR						
Qual Unit Build and Test							Unf	fueled Qual U	l nit			
Flight Unit Build and Test								Shi	ip to INL for fu	eling		
INL Fueling and Verification Testing										Flight unit r	eady	
Available for Launch												
New Frontiers 5												
DRPS Risk Reduction												
Develop Generator Concepts												
Build flight-relevant test article												
Demonstrate Proposed DRPS Features												
Controller Development			•									
Dual Generator Test on Simulated Spacecraft												

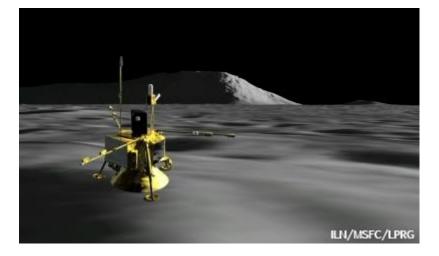
1

0.9

Generator Reliability 2. 80 2.

0.6

0.5


First Mission Potential

First flight-mission use of any new conversion technology must accept some risk

20 year life requirement is atypical

- Demonstrating 2x life via experiment is not realistic
- Statistical reliability analysis will have small number of hardware data points
- Fabrication of tens of hardware data points not possible on current timeline
- Convertor-level accelerated testing not possible
- Convertor component accelerated testing is possible
- Convertor redundancy has significant effect on generator reliability
 - R=0.9 R=0.8 R=0.5 1 2 3

Convertor Redundancy

Lunar mission is an attractive first use

- Short cruise time (days, not years)
- Short mission duration (2 years instead of 20)
- Significant science return
- Many candidate missions enabled or enhanced by nuclear power:
 - o 330-hr darkness
 - Permanently-shadowed craters

Generator and Convertor Risk Mitigation

Is dynamic conversion worth the risk? What can be done to encourage adoption?

GRC-designed pressure vessel

Ideal spacecraft power source (target these traits):

- Reliable, always producing power
- Consistent output during every mission environment
- High power density and specific power ٠
- No disturbance to spacecraft (EMI, vibration, thermal)
- Simple con-ops (for fueling, launch, EDL, cruise)
- No human-in-the-loop needed at any mission stage ٠
- No ground-command intervention needed
- Robust: Margin, fault tolerance, redundancy

Convertor risk mitigation:

- Long-term material property data (metals and organics)
- Radiation endurance
- Component accelerated tests
- Robustness demonstrations (perhaps test to destruction)
- Develop enhancing products (e.g. debris-free regenerator)

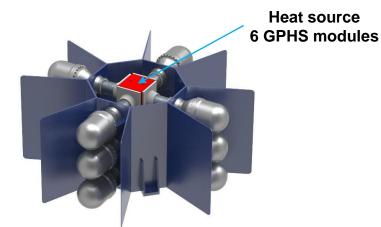
Generator risk mitigation:

- Demonstrate concept with convertor redundancy
- Demonstrate radiant heat source coupling to convertor
- Simple controller development, with fault tolerance
- Test multiple generators on spacecraft electrical bus

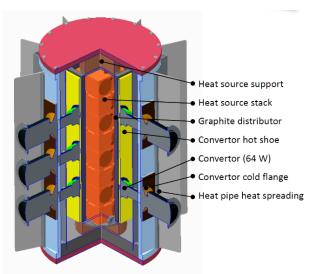
GRC-developed generator concept

Vibration simulation test

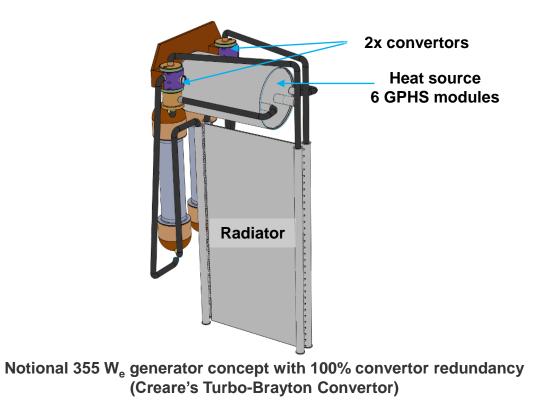
Electric heat source



GRC-developed analog controller



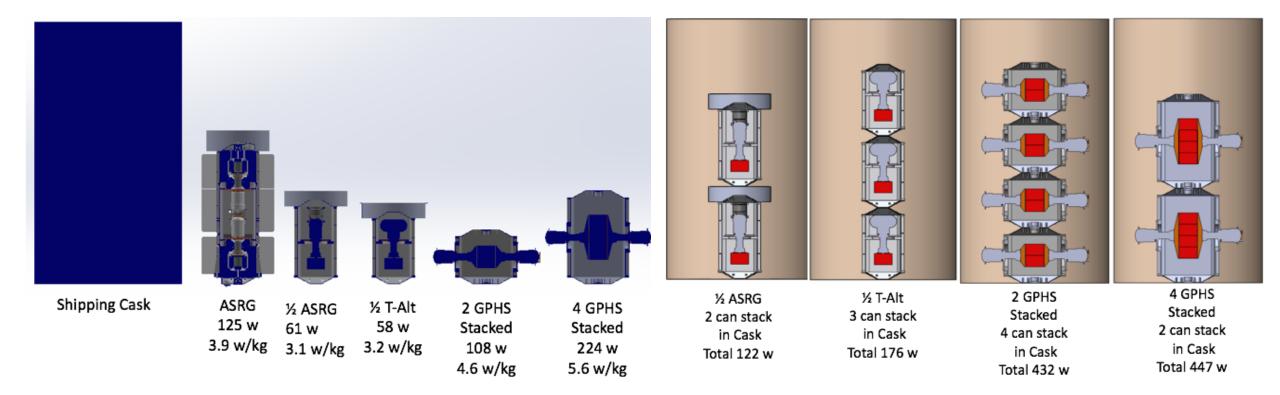
Example System Concepts



Notional 420 W_e generator concept with 100% convertor redundancy (AMSC's Flexure Isotope Stirling Convertors)

Notional 500 W_e generator concept with 25% convertor redundancy (Sunpower's Robust Stirling Convertor)

GRC's System Concept Evaluation


NASA

- Centrally located heat source allows heat sharing, convertor redundancy
- Heat source can be remotely located, AND shared amongst convertors (requires heat transport via heat pipes)

	ASRG	SRG-200	SRG-400		KP-1		
BOM Power	140 We	193 We	370 We	495 We			1097 We
No. GPHS	2	3	6			Fission	
Heat Source Config.	Distributed & dedicated		ntralized & shau using heat pipe		Distributed & dedicated	d & shared at pipes	
Stirling Config.	2X 80W ASC	2X 200V	V ASC-H		4X 200W ASC-H		8X 200W ASC-H

GRC's System Concept Evaluation

- The envelope dimensions of any generator building block can be estimated
- Heat-engine length determined by operating frequency, but diameter grows with power
- Housing size set by required insulation thickness around GPHS module
- Central heat source arrangements have higher specific power
 Lower GPHS thermal loss, closer coupling of rejection zone to radiator

Conclusions and Next Steps

A strategy has been formulated supporting flight of a dynamic-conversion RPS near 2028

- Requirements are nearing completion
- Lessons learned from previous efforts are being implemented
- Design elements that enhance reliability and robustness are being considered
- Usability and ease of mission integration hold higher priority than performance
- Next steps:
- 1. More detailed system concept generation
- 2. Initiate system concept hardware testing
- 3. Initiate system component risk reduction tasks
- 4. Pass conversion technology Gate Review ~ Feb 2020