

3D unsteady model of arc heater plasma flow using the ARC Heater Simulator (ARCHeS)

Jeremie B. E. November 5th – 9th, 2018

Jeremie B. E. Meurisse, Sander J. Visser, Sergio Fraile Izquierdo, Magnus Haw and Nagi N. Mansour

TECHNOLOGY DRIVES EXPLORATION

Arc jet facility

ARCHeS is a platform being developed to...

- provide inlet conditions needed by aerothermal models that yield flow properties and conditions at the test article,
- provide understanding of facility operation,
- guide setting up test conditions,

- tailor conditions to improve uniformity,
- inform electrode maintenance schedule,
- inform (V&V) upgrade designs,
- optimize current operational capability...

Plasma fields

FLOW CONDITION	$U_{avg} \approx 400 \text{ m/s}$	$P_{avg} \approx 13 atm$	$T_{avg} \approx 8000 \text{ K}$
ELECTROMAG.	$I_{avg} \approx 1200 \text{ A}$	$B_{avg} \approx 0.2 T$	$\sigma_{\rm avg} \approx 0.1 \ {\rm S/m}$

$$S = \frac{L v_A}{\eta} = \frac{L \frac{B}{\sqrt{\rho \mu_0}}}{\eta} = 10^{-5}$$

High Lundquist numbers indicate **highly conducting** plasmas. Low Lundquist numbers indicate **more resistive** plasmas.

Assumptions

$$S = \frac{L v_A}{\eta} = 10^{-5} \longrightarrow \text{The magnetic convection is negligible}$$
$$I = \sigma E \longrightarrow \text{The Ohm's law is simplified}$$

- $\partial_{\mathbf{x}} \times \mathbf{B} = \mu_0 \mathbf{J}$ \longrightarrow The displacement current is ignored (V₀ << c)
- $\mathbf{B} = \mathbf{\partial}_{\mathbf{x}} \times \mathbf{A}$ \longrightarrow The vector potential formulation ensures zero divergence of the **B** field
- ∂_x . J = 0 \longrightarrow Diverge of Ampere's law gives the continuity of current
- $-\partial_x^2 \mathbf{A} = \mu_0 \mathbf{J}$ \longrightarrow Rotational of Ampere's law simplifies the equation

 $\begin{cases} \partial_{\mathbf{x}} \cdot (-\sigma \partial_{\mathbf{x}} \phi_{i}) = 0 \\ \partial_{\mathbf{x}}^{2} \mathbf{A}_{i} - \mu_{0} \sigma \partial_{\mathbf{x}} \phi_{i} = 0 \end{cases}$

System of electromagnetic equations solved in ARCHeS

MASS	$\partial_t \rho + \partial_x (\rho u) = 0$
MOMENTUM	$\partial_t(\rho \mathbf{u}) + \partial_x \cdot (\rho \mathbf{u} \mathbf{u}) = - \partial_x p + \partial_x \cdot \overline{\overline{\tau}}$
ENERGY	$\partial_t(\rho E_0) + \partial_x \cdot (\rho H_0 u) = \partial_x \cdot (\overline{\overline{\tau}} \cdot u + q^{cond})$
	·

MASS	$\partial_t \rho + \partial_x (\rho u) = 0$		
MOMENTUM	$\partial_t(\rho \mathbf{u}) + \partial_x \cdot (\rho \mathbf{u} \mathbf{u}) = -\partial_x \mathbf{p} + \partial_x \cdot \overline{\overline{\mathbf{\tau}}} + \mathbf{J} \times \mathbf{B}$		
ENERGY	$\partial_t(\rho E_0) + \partial_x \cdot (\rho H_0 u) = \partial_x \cdot (\overline{\tau} \cdot u + q^{cond}) + \sigma E ^2 + u \cdot (J \times B)$		
IMPOSED CURRENT	$\partial_x \cdot (-\sigma \partial_x \phi_i) = 0$ $E_i = -\partial_x \phi_i$ $J_i = \sigma E_i$		
IMPOSED MAGNETIC	$\partial_x^2 \mathbf{A}_i - \mu_0 \sigma \partial_x \phi_i = 0$ $\mathbf{B}_i = \partial_x \times \mathbf{A} \mathbf{i}$		
EXTERNAL MAGNETIC	$\mathbf{A}_{\mathbf{e}} = \frac{\mu_0 \mathbf{I}_{\mathbf{e}}}{4\pi} \oint \frac{dl}{ r - r' } \qquad \mathbf{B}_{\mathbf{e}} = \partial_{\mathbf{x}} \times \mathbf{A}_{\mathbf{e}}$		
TOTAL FIELD	$\mathbf{B} = \mathbf{B}_{\mathbf{i}} + \mathbf{B}_{\mathbf{e}}$ $\mathbf{E} = \mathbf{E}_{\mathbf{i}}$ $\mathbf{J} = \mathbf{J}_{\mathbf{i}}$		

MASS	$\partial_t \rho + \partial_x (\rho u) = 0$		
MOMENTUM	$\partial_t(\rho \mathbf{u}) + \partial_x \cdot (\rho \mathbf{u} \mathbf{u}) = -\partial_x \mathbf{p} + \partial_x \cdot \overline{\overline{\tau}} + \mathbf{J} \times \mathbf{B}$		
ENERGY	$\partial_t(\rho E_0) + \partial_x \cdot (\rho H_0 u) = \partial_x \cdot (\overline{\overline{\tau}} \cdot u + q^{cond}) + \sigma E ^2 + u \cdot (J \times B) - \partial_x \cdot q^{rad}$		
IMPOSED CURRENT	$\partial_x \cdot (-\sigma \partial_x \phi_i) = 0$ $E_i = -\partial_x \phi_i$ $J_i = \sigma E_i$		
IMPOSED MAGNETIC	$\partial_x^2 \mathbf{A}_i - \mu_0 \sigma \partial_x \phi_i = 0$ $\mathbf{B}_i = \partial_x \times \mathbf{A} \mathbf{i}$		
EXTERNAL MAGNETIC	$\mathbf{A}_{\mathbf{e}} = \frac{\mu_0 \mathbf{I}_{\mathbf{e}}}{4\pi} \oint \frac{dl}{ r - r' } \qquad \mathbf{B}_{\mathbf{e}} = \mathbf{\partial}_{\mathbf{x}} \times \mathbf{A}_{\mathbf{e}}$		
TOTAL FIELD	$\mathbf{B} = \mathbf{B}_{\mathbf{i}} + \mathbf{B}_{\mathbf{e}}$ $\mathbf{E} = \mathbf{E}_{\mathbf{i}}$ $\mathbf{J} = \mathbf{J}_{\mathbf{i}}$		

ARC Heater Simulator

Hot electric arc core cools down and the surroundings warm up. Importance of the 3D radiative transfer.

Electric arc instabilities

ARCHeS simulation with equilibrium air chemistry. The color represents the magnitude of the total magnetic field. Iso-surface of the current density of 1 MA/m².

Stable arc next to the electrode chambers. Instablilities arise in the constrictor.

Air mixture

Electric arc attachment

Cross technology impact

https://www.nasa.gov/centers/glenn/about/fs22grc.html, 08/10/2018

With **minimal investment** the toolkit can provide modern simulation toolkit for optimizing **in-space electric propulsion systems** such as:

- Magnetohydrodynamic Thruster
- Pulsed Plasma Thruster
- Hall Effect Thruster
- Helicon Double Layer Thruster
- Variable Specific Impulse Magnetoplasma Rocket

Future work

ARCHeS improvement

- MHD physical models
 Magnetic flux equations with regions of
 zero conductivity
- **2 temperature formulation** Very thin layer where the electron temperature and heavy separate due to strong magnetic field
- Thermo/Transport/Chemistry
 Elemental conservation and finite-rate
- Radiation

Opacity tables with variable elemental composition

- Electrodes surface response
 Melt & evaporation of copper formulation
 Coupling to PATO
- Validation experiments

Coupling to optimization library

ARCHeS will be coupled to DAKOTA to enable optimization of operating parameters to achieve quantity of interest

Experimental validation plan

- Electrode arc detachment events
 - High frequency electrode current probe
 - High frequency electrode voltage probe

Thermal and electromagnetic boundary conditions

- Electrostatic (Langmuir) probes
- External magnetic probes
- Laser induced fluorescence

Internal temperature, flow profiles

- Emission spectroscopy
- Laser induced fluorescence

mARC 2.0

TS division

NASA Ames Research Center

Important features

ANODES CONSTRICTOR CATHODES

Boundary conditions

	p [Pa]	T [K]	$u \mathrm{[m/s]}$
BC1	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	T_w	$\boldsymbol{u}=\boldsymbol{0}$
BC2	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	$\partial_{\boldsymbol{x}} T \cdot \boldsymbol{n} = 0$	$\partial_{\boldsymbol{x}} \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{0}$
BC3	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	T_w	u = 0
BC4	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	$\partial_{\boldsymbol{x}} T \cdot \boldsymbol{n} = 0$	$oldsymbol{u}=oldsymbol{0}$
BC5	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	$\partial_{\boldsymbol{x}} T \cdot \boldsymbol{n} = 0$	u = 0
BC6	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	T_w	\dot{m}_{BC6}
BC7	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	T_w	u = 0
BC8	$\partial_{\boldsymbol{x}} p \cdot \boldsymbol{n} = 0$	T_w	\dot{m}_{BC8}

	ϕ_{imp} [V]	$oldsymbol{A}_{imp} \left[\mathrm{T} \cdot \mathrm{m} ight]$	$A_e [\text{T} \cdot \text{m}]$
BC1	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot\boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$
BC2	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot \boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$
BC3	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot \boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$
BC4	$I_{imp,tot}$	$A_{imp} = 0$	$A_e = 0$
BC5	$\phi^n_{imp,c_i} = \phi_G - R_b I^{n-1}_{imp,c_i}$	$A_{imp} = 0$	$A_e = 0$
BC6	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot\boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$
BC7	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot\boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$
BC8	$\partial_{\boldsymbol{x}}\phi_{imp}\cdot \boldsymbol{n}=0$	$A_{imp} = 0$	$A_e = 0$

BC of the Navier-Stokes equations

BC of the Maxwell equations