

Robonaut's Return to ISS

POIWG Main Forum April 24, 2019

Jonathan Rogers
Robonaut Deputy Project Manager
NASA/JSC
jonathan.m.rogers@nasa.gov

Approved for public release, distribution unlimited eDAA TN67193

Overview

- Intro to Robonaut 2
- Brief history of R2 on ISS
 - Tasks completed and lessons learned from torso-only ops
 - Mobility upgrade
 - Anomaly and troubleshooting efforts
- Repair and Upgrades
 - Cause of the anomaly
 - System improvements
- Plans for return to ISS
 - Unpacking, checkout
 - Russian Joint Research opportunity
- Ties to future work
 - Technology demonstrator for Gateway robotic capabilities

Robonaut 2 (R2)

- Started in 2007 with GM
 - Leveraged Robonaut 1 technology (1998-2006)
- Shared common goals with industry
 - Use humans' tools
 - Safely share humans' workspace
 - Do real (useful) work
- Project announced in early 2010
 - Two functioning R2 units
 - GM and NASA tasks demonstrated in lab environment

Robonaut 1, Units A & B

R2 Goes to ISS

- ISS Decides to Fly R2 on STS-133
 - Payload route chosen (Tech Demo)
 - MOD involvement limited to JSL
- R&D Lab Unit Converted to IVA Flight Unit
 - 5 month sprint
- Ops Scenario Defined
 - Fixed base
 - Task board activities
- Flown and Delivered to ISS
 - First motion Oct 2011
 - First humanoid robot in space

Successes On Orbit

- Free Space Activities
 - Including PAO activities
- First Tool Use
 - New view of VelociCalc readings for Ground Personnel
 - Augmented with machine vision
 - Manipulated RFID tool
- Task Board Ops
 - Buttons, switches, and knobs
 - Integrated machine vision
 - Force guided manipulation
 - Handrail cleaning
 - Softgoods manipulation
- Teleoperation
 - Softgoods manipulation
 - Floating object capture

Torso Lessons Learned

- Conservative Safety Approach Hindered Performance
 - The right initial approach first non-caged robot inside a space vehicle
 - Safety given top priority during initial checkout
 - Safety systems pushing processors to the limit
 - Frequent false positives
 - Safety limits and configuration not easily changed
 - Required approval from Safety Review Panel
- Learned About Operating a Complex System in Space
 - Performance ground testing was not a perfect match to flight
 - Found a few communication issues
 - Subtle differences between flight and cert robots.

Mobility Upgrades Improve R2

- Designed, built, and qualified climbing legs
- Upgraded Processors
 - Went from two 750 MHz PowerPC processors to three Core i7 processors
 - Operating system changed from VxWorks to Ubuntu Linux
 - Implemented ROS Robot Operating System, an open-source robotics software framework
- New Control Architecture
 - Higher performance
 - Improved safety system
 - Two fault tolerant system approved by the Safety Review Panel
- Improved Strategies
 - Removing unnecessary safeties
 - Limiting momentum not velocity
 - Refined safety limits
 - Pause before issuing a fault and disabling motor power ("soft stops")

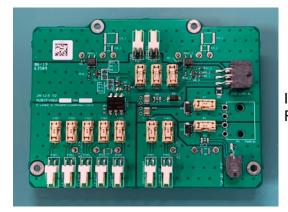
Post-Upgrade Anomaly

- Installation went smoothly
 - Great work from Swanny
- Initial checkouts successful
 - Sensors were healthy
 - All boards communicating
- Processors stopped responding during software upgrade session
 - Came back with reboots, but uptime became less and less
 - Eventually processors wouldn't boot

On-orbit Troubleshooting and Return

- Worked with 6 crewmembers over 10 sessions to troubleshoot
 - Replaced cards & processors in computer chassis
 - Took measurements with digital multimeter and USB oscilloscope
 - Attempted to bypass suspected bad cable
- Engineering team developed a plan to send a bypass harness
 - Data from crew activities showed that R2 had a degraded 24V power return cable from the computer chassis
 - Went to ISS Program with this plan, but the big-picture decision was to bring R2 home for a proper repair
- R2 was packed up in Feb 2018 and returned on SpaceX-14
 - Arrived in Robonaut lab at JSC in May 2018

Cause of Anomaly


- Fault diagnosed as a missing return wire for computer chassis power
 - On-orbit troubleshooting results put team on the right track for a quick confirmation once home
 - Current returned through an alternate, undersized path
 - A connector in the backpack overheated and opened
 - This issue would have been very difficult to repair on-orbit
- Cause identified as improperly managing return currents in design
- Fault was present in the torso-only configuration, but the lowerpower processors operated within the capacity of the sneak circuit

System Improvements

- Did full electrical assessment of flight and cert Robonaut units
 - Compared to a workhorse engineering unit
- Identified and resolved three more potential sneak circuits
- Improved distribution of safety power
- Upgraded the network gateway
- Replaced chassis power supply
- Closed an NCR against excessive force controls
 - Originated when our battery backpack got delayed (later cancelled) late in the development of the mobility upgrades
- Operating system and robot software upgrades
 - Ubuntu 16.04 and ROS Kinetic

Isolated DC-DC converter for Robonaut's head sensors

VersaLogic *Raven* Embedded Processing Unit

Path for Return to ISS Operations

- Currently working through final verifications before flight
 - As of 3/26/19, not yet assigned to a flight but on IPL
 - Project's internal schedule has targeted an October 2019 flight
 - Restricted to Cygnus or SpaceX vehicles due to size of Robonaut
 - Will require backpack removal for launch and crew install on ISS
- Checkout activities will ensure system is healthy after launch
 - Discussed doing this as an initial Russian Joint Research activity
 - Training US crews on expected packing configuration and basic ops
 - IPV has an OBT translated into Russian, estimate 30-45 minutes to review

Overview of Crew-Tended Checkout

Crew Time:

- US Crew time listed is for a ground-trained USOS crew member
- RS Crew time listed is for a non-ground trained Russian crew member
- Sessions require support of either Russian or US crew, but not both
- Assumes proficiency gained with the following activities:
 - Video setup following the second session
 - Manual unstow/stow after the first and third sessions

Session	Target	Inc	US Crew	RS Crew	Activity
1	November*	61*	4:50	6:15	Mobility Checkout
2	December*	61*	1:35	2:15	Mobility Session #1
3	January*	62*	1:35	2:15	Mobility Session #2
4	February*	62*	1:35	1:35	Contingency Re-test Session #1
5	March*	62*	1:35	1:35	Contingency Re-test Session #2
			11:10	13:55	Total Estimated Crew Time

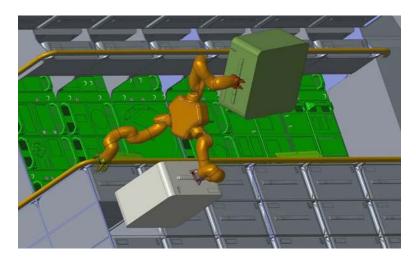
^{*} Notional schedule dependent on Robonaut's return to ISS and assumes backpack is installed prior to Session 1

Autonomous Logistics Demonstration June 2018

- Supported by AES Logistics Reduction Project
 - Milestone Aug. 2020 to demonstrate a robotic collaboration task where
 Robonaut and Astrobee work to locate and retrieve a CTB located by REALM.
- [Video removed due to eDAA size limitation]
 - Previously approved via eDAA TN57977

Why Return Robonaut to ISS?

- Robonaut offers a unique platform for TRL advancement
 - An investment has already been made - let's benefit from it
 - Robonaut is a stable platform that is human-safe
 - R2 has history of tech transfer to other manipulators, like the industrial UR5
 - Successful spinoffs like MED2 and RoboGlove
- Gain additional experience on ISS to refine Gateway Intravehicular Robotics (IVR) design and OpsCon



Testbed for Gateway Technologies

- Use Robonaut on ISS as a testbed for robotic caretaking capabilities needed for Gateway
 - Test strategies for climbing mobility in a cluttered environment
 - Advance supervised autonomy for robotic tasks over time-delay and limited bandwidth
 - Investigate manipulation and vision processing commanding over a distributed computing architecture
 - Execute candidate tasks to demonstrate robotic capabilities with REALM and Astrobee
 - In the future, leverage the SPHERES model to allow collaborators to test their own technologies on Robonaut

Questions?

BACKUP

Climbing Will Teach New Lessons

- R2 IVA is a Test Environment
 - ISS is being used as a laboratory
 - Gain experience with gaits, forces and ops concepts
 - Problems will be found and solved
 - Robot must prove itself before each new "step"
- Station is a Cluttered Environment
 - Climbing strategies will develop with testing and updates
- Big Robot
 - Some ISS stakeholders will be concerned with robot proximity
 - Procedures will accommodate stakeholders
- Will not translate as fast as some folks want
 - That's ok

Successes On Orbit

