Combined Error and Uncertainty Estimates for CFD Problems

Timothy Barth

NASA Ames Research Center

Timothy.J.Barth@nasa.gov

PASC2018
July 4, 2018

Non-Intrusive Uncertainty Propagation for CFD Calculations

Given input sources of uncertainty, non-intrusive uncertainty propagation methods quantify the uncertainty in output quantities of interest (Qol) by performing a finite number of CFD instance realizations needed in the calculation of output statistics. It is well known that this introduces multiple sources of error.

- CFD codes often utilize finite-dimensional approximation (grids, basis functions, etc) thus incurring CFD numerical errors often approximately reinterpreted as a statistical bias.
- Uncertainty propagation methods calculate uncertainty statistics for output quantities of interest using a numerical method (e.g. deterministic quadrature, sampling, etc.) thus incurring UQ numerical errors.

Importance of quantifying these errors in large scale scientific computing

- How accurate is an output statistic?
- How should additional computational resources be invested to further reduce the error in a statistic?

Fundamental Error Decomposition

- u infinite-dimensional aspirational "truth" solution,
- U infinite-dimension model solution,
- U_{h} finite-dimensional model solution,
- $J(\cdot)(x, t)$ output quantities of interest (Qol),
- $E[\cdot]$ statistics functional,
- $Q_{M} E[\cdot] M$-evaluation approximated statistics functional.

Statistics error

$$
\begin{aligned}
E[J(u)]-Q_{M} E\left[J\left(U_{h}\right)\right] & =\underbrace{E[J(u)]-E[J(U)]}_{\text {stat model error }}+\underbrace{E[J(U)]-E\left[J\left(U_{h}\right)\right]}_{\text {stat CFD numerical error }} \\
& +\underbrace{E\left[J\left(U_{h}\right)\right]-Q_{M} E\left[J\left(U_{h}\right)\right]}_{\text {UQ numerical error }}
\end{aligned}
$$

Preview Example: Uncertainty Calculation with Error Bounds - I

ONERA M6 wing calculation

- Compressible Reynolds-averaged Navier-Stokes CFD calculation,
- Spalart-Allmaras turbulence model, Reynolds number 11.7×10^{6},
- $p=1$ finite volume discretization (5 million mesh points),
- Inflow Mach number, $M_{\infty} \sim \operatorname{Normal}_{3 \sigma}(m=.84, \sigma=.012)$,
- Angle of Attack, $A O A \sim \operatorname{Normal}_{3 \sigma}(m=3.06, \sigma=.075)$.

$$
\text { expectation(density) } \quad \log _{10} \text { variance(density) }
$$

Preview Example: Uncertainty Calculation with Error Bounds - II

ONERA M6 wing surface pressure coefficient statistics at 65% wing span.

Surface Pressure Statistics

Closeup error bound intervals

Preview Example: Uncertainty Calculation with Error Bounds - III

ONERA M6 wing upper surface pressure coefficient expectation error at 65% wing span location.

$$
\begin{aligned}
E[J(u)]-Q_{M} E\left[J\left(U_{h}\right)\right] & =\underbrace{E[J(u)]-E[J(U)]}_{\text {stat model error }}+\underbrace{E[J(U)]-E\left[J\left(U_{h}\right)\right]}_{\text {stat CFD numerical error }} \\
& +\underbrace{E\left[J\left(U_{h}\right)\right]-Q_{M} E\left[J\left(U_{h}\right)\right]}_{\text {UQ numerical error }}
\end{aligned}
$$

Numerical Quadrature

Let $I[f]$ denote the weighted definite integral

$$
I[f]=\int_{\boldsymbol{\Xi}} f(\boldsymbol{\xi}) p(\boldsymbol{\xi}) d \boldsymbol{\xi}, \quad p(\boldsymbol{\xi}) \geq 0
$$

and $Q_{M} I[f]$ denote an M-point weighted numerical quadrature

$$
Q_{M} I[f]=\sum_{i=1}^{M} w_{i} f\left(\boldsymbol{\xi}_{i}\right)
$$

with weights w_{i} and evaluation points $\boldsymbol{\xi}_{i}$ depending on $p(\boldsymbol{\xi})$. Finally, define numerical quadrature error denoted by $R_{M} I[f]$, i.e.

$$
R_{M} I[f]=I[f]-Q_{M} I[f]
$$

Error Formulas for Moment Statistics - I

Given the QOI realization error magnitude

$$
\left|\boldsymbol{\epsilon}_{h}\right| \equiv\left|J(U ; \alpha)-J\left(U_{h} ; \alpha\right)\right|
$$

and $\left|R_{M} I[\cdot]\right|$, we have the following bound estimates from Barth (2013):

Expectation Error Bound:

$$
\left|E[J(U)]-Q_{M} E\left[J\left(U_{h}\right)\right]\right| \leq\left|Q_{M} E\left[\left|\epsilon_{h}\right|\right]\right|+\left|R_{M} E\left[\left|\epsilon_{h}\right|\right]\right|+\left|R_{M} E\left[J\left(U_{h}\right)\right]\right|
$$

Variance Error Bound:

$$
\begin{aligned}
\left|V[J(U)]-Q_{M} V\left[J\left(U_{h}\right)\right]\right| \leq & 2\left(\left(\left|Q_{M} E\left[\left|\epsilon_{h}\right|^{2}\right]\right|+\left|R_{M} E\left[\left|\epsilon_{h}\right|^{2}\right]\right|\right)\right. \\
& \left.\times\left(\left|Q_{M} V\left[J\left(U_{h}\right)\right]\right|+\left|R_{M} V\left[J\left(U_{h}\right)\right]\right|\right)\right)^{\frac{1}{2}} \\
+ & \left|Q_{M} E\left[\left|\epsilon_{h}\right|^{2}\right]\right|+\left|R_{M} E\left[\left|\epsilon_{h}\right|^{2}\right]\right|+\left|R_{M} V\left[J\left(U_{h}\right)\right]\right|
\end{aligned}
$$

- Red and magenta terms can be made smaller by $\downarrow \epsilon_{h}$.
- Blue and magenta terms can be made smaller by $\uparrow M$.
- Issues: sharpness of variance estimate and regularity of integrands.

Error Formulas for Moment Statistics - II

When the signed QOI realization error

$$
\epsilon_{h} \equiv J(U ; \alpha)-J\left(U_{h} ; \alpha\right)
$$

and signed quadrature error $R_{M}[\cdot]$ can be approximated, we have a sharp error representation. Let $\tilde{J} \equiv J_{h}+\tilde{\epsilon}_{h}$

Expectation error estimate:

$$
E[J]-Q_{M} E\left[J_{h}\right] \approx Q_{M} E[\tilde{J}]+R_{M} E[\tilde{J}]-Q_{M} E\left[J_{h}\right]
$$

Variance error estimate:

$$
\begin{aligned}
V[J]-Q_{M} V\left[J_{h}\right] \approx & Q_{M} E\left[\tilde{J}^{2}\right]+R_{M} E\left[\tilde{J}^{2}\right]-\left(Q_{M} E[\tilde{J}]+R_{M} E[\tilde{J}]\right)^{2} \\
& -\left(Q_{M} E\left[J_{h}^{2}\right]-Q_{M}^{2} E\left[J_{h}\right]\right)
\end{aligned}
$$

- Red terms collectively can be made smaller via mutual cancellation by decreasing realization error $\downarrow \tilde{\boldsymbol{\epsilon}}_{h}$.
- Blue terms can be made smaller by decreasing quadrature error $\uparrow M$.

Calculation of Moment Statistics via Multi-level Quadrature

- Multi-level dense product quadratures (\# dimensions ≤ 3)
- Multi-level Clenshaw-Curtis and Gauss-Patterson quadratures,

- Multi-level sparse product quadratures (\# dimensions ≤ 12)
- Multi-level Clenshaw-Curtis and Gauss-Patterson sparse grids, Novak and Ritter (1996)
- Multi-level sampling methods (\# dimensions large)
- Multi-level MC sampling, Mishra and Schwab (2009)

Dense Quadrature

Sparse Quadrature

MC Sampling

Multi-level Quadrature Error Estimates

d-dimensional L-level asymptotic quadrature error estimates

- Dense product quadrature

$$
\underbrace{R_{1}^{(d)}[f f}_{\text {radrature e eror }} \equiv I^{(d)}[f]-Q_{L}^{(d)}[f] \approx \underbrace{\frac{1}{2^{r}-1}}_{\text {regularity factor }} \underbrace{\left(Q_{L}^{(d)}[f]-Q_{L-1}^{(d)}[f]\right)}_{\text {mutiti-level l uudadrature }}
$$

$$
2^{r}=\frac{Q_{L-1}^{(d)}[f]-Q_{L-2}^{(d)}[f]}{Q_{L}^{(d)}[f]-Q_{L-1}^{(d)}[f]}
$$

- Sparse product quadrature, Novak and Ritter (1996)

$$
\underbrace{R_{L}^{(d)}[f]}_{\text {quadrature error }} \equiv I^{(d)}[f]-Q_{L}^{(d)}[f] \approx \underbrace{\frac{1}{\left(\frac{L-1}{L}\right)^{(d-1)(r+1)} 2^{r}-1} \underbrace{\left(Q_{L}^{(d)}[f]-Q_{L-1}^{(d)}[f]\right)}_{\text {multi-level quadrature }}]}_{\text {regularity factor }}
$$

$$
2^{r} \approx \min _{i=1 . . . d} \frac{Q_{L-L}^{(1, j)}[f]-Q_{L-L}^{(1, i)}[f]}{Q_{L}^{(1, i)}[f]-Q_{L-1}^{(1, i)}[f]}
$$

where $Q_{L}^{(1, i)}$ is an L-level one-dimensional quadrature in the i-th dimension.

Multi-level Monte Carlo-Finite Volume - I

Decompose the expectation (or the expectation of k-moments) as the sum of expectation increments computed on finite volume CFD mesh levels $\{0, \ldots, L\}$

$$
E\left[U_{L}\right]=E\left[U_{0}\right]+\sum_{l=1}^{L}\left(E\left[U_{l}\right]-E\left[U_{l-1}\right]\right)=E\left[U_{0}\right]+\sum_{l=1}^{L}\left(E\left[U_{l}-U_{l-1}\right]\right)
$$

Approximate the expectation at level / using M_{l} Monte Carlo samples

$$
Q_{M_{L}} E\left[U_{L}\right] \approx Q_{M_{0}} E\left[U_{0}\right]+\sum_{l=1}^{L} Q_{M_{l}} E\left[U_{l}-U_{l-1}\right]
$$

Optimize Monte Carlo sample size at each level M_{l} by asymptotic error balancing for an $\mathcal{O}\left(\Delta x^{s}\right)$ convergent FVM method (Mishra \& Schwab (2009), Sukyis (2014))

$$
M_{l}=C \Delta x_{l}^{2 s} \Delta x_{L}^{-2 s}=\mathcal{O}\left(2^{2 s(L-l)}\right)
$$

- Largest \# of MC samples, M_{0}, required for the coarsest CFD mesh,
- Smallest \# of MC samples, M_{L}, required for the finest CFD mesh.

Computational work when $s \leq(d+1) / 2$ is asymptotically the same as a single finite volume solve (modulo logarithmic factor).

Multi-level Monte Carlo-Finite Volume - II

Error estimate for multi-level MC-FVM (Mishra and Schwab (2009))

$$
\left\|E[U(\cdot, t)]-Q_{L} E\left[U_{L}(\cdot, t)\right]\right\|_{L^{2}\left(\Omega, L^{1}\left(R^{d}\right)\right)}=\mathcal{O}\left((L+2) 2^{-s L}\right)
$$

Output Qol variant of the multi-level Monte Carlo - finite volume method

$$
Q_{L} E\left[J\left(U_{L}\right)\right]=Q_{0} E\left[J\left(U_{0}\right)\right]+\sum_{l=1}^{L}\left(Q_{l} E\left[J\left(U_{l}\right)-J\left(U_{l-1}\right)\right]\right)
$$

Assume an asymptotic error ansatz for an unspecified rate constant q

$$
\left|E[J(U)]-Q_{L} E\left[J\left(U_{L}\right)\right]\right|=\mathcal{O}\left((L+2) 2^{-q L}\right)
$$

Multi-level Monte Carlo-Finite Volume asymptotic error formula

$$
E[J(U)]-Q_{L} E\left[J\left(U_{L}\right)\right]=\frac{1}{\frac{L+1}{L+2} 2^{q}-1}\left(Q_{L} E\left[J\left(U_{L}\right)\right]-Q_{L-1} E\left[J\left(U_{L-1}\right)\right]\right)
$$

$$
\begin{aligned}
& 2^{q}=\frac{(1+R) F(L)+\sqrt{(1+R)^{2} F^{2}(L)-4 F(L) F(L-1) R}}{2 F^{2}(L) F(L-1)} \\
& F(L) \equiv \frac{L+1}{L+2}, \quad R \equiv \frac{Q_{L-1} E\left[J\left(U_{L-1}\right)\right]-Q_{L-2} E\left[J\left(U_{L-2}\right)\right]}{Q_{L} E\left[J\left(U_{L}\right)\right]-Q_{L-1} E\left[J\left(U_{L-1}\right)\right]}
\end{aligned}
$$

Multi-level Monte Carlo-Finite Volume - III

Burgers equation with amplitude uncertain initial data

$$
\begin{aligned}
\partial_{t} u_{\mathbf{x}}+\partial_{x} u_{\mathbf{x}}^{2} / 2 & =0 \\
u_{\mathbf{x}}(x, 0, \omega) & =\mathbf{X}(\omega) \sin (2 \pi x)
\end{aligned}
$$

Random variable Burgers solution, $T=\frac{1}{4}, \mathbf{X}(\omega) \sim \mathcal{N}_{3}[m=.8,0.1]$

Output Qol functional

$$
J(u)(x, t)=\int_{-w / 2}^{w / 2} u(x-\xi, t) d \xi
$$

Estimated expectation $E[J(u)]$ error, $T=\frac{1}{4}, \Delta x=\frac{1}{128}, w=5 / 256$, Sobol sampling,

Estimating CFD Qol Realization Error

Estimate $\boldsymbol{\epsilon}_{h}^{(i)} \equiv J\left(u ; \alpha^{(i)}\right)-J\left(u_{h} ; \alpha^{(i)}\right)$ for each realization i.

- Richardson (2-level) and parameter-free Aitken (3-level) asymptotic extrapolation using space-time grid hierarchies, e.g.

$$
\begin{aligned}
J(u ; \alpha)-J\left(u_{h} ; \alpha\right) & \approx \frac{1}{2^{q}-1}\left(J\left(u_{h} ; \alpha\right)-J\left(u_{2 h} ; \alpha\right)\right) \\
\text { with } \quad 2^{q} & =\frac{J\left(u_{2 h} ; \alpha\right)-J\left(u_{4 h} ; \alpha\right)}{J\left(u_{h} ; \alpha\right)-J\left(u_{2 h} ; \alpha\right)}
\end{aligned}
$$

- A posteriori error estimation of functionals using dual / adjoint problems, Becker and Rannacher (1996)

$$
J(\mathbf{u})-J\left(\mathbf{u}_{h}\right)=F\left(\Phi-\pi_{h} \Phi\right)-\mathcal{B}\left(\mathbf{u}_{h}, \Phi-\pi_{h} \Phi\right)
$$

with $\mathcal{B}(\cdot, \cdot)$ the primal semi-linear form, $F(\cdot)$ the right-hand-side forcing, and Φ a linearized dual problem.

- Patch postprocessing techniques, Zienkiewicz-Zhu (1992), Bramble-Schatz (1998), Cockburn et. al. (2003), exploiting superconvergence.

Example: High-lift Wing-Body Flow with Geometric Uncertainty

Wing-body flow with slat and flap angle uncertainty

- AIAA CFD High Lift Prediction Workshop test case,
- Reynolds-averaged Navier-Stokes equations, Spalart-Allmaras turbulence model,
- Mach $=0.2, \mathrm{AOA}=13^{\circ}, R e=108,000$,
- 90 million mesh points,
- $\alpha_{\text {slat }}=30^{\circ}+\operatorname{Gaussian}_{4 \sigma}\left(m=0.0^{\circ}, \sigma=.75^{\circ}\right)$,
- $\alpha_{\text {flap }}=25^{\circ}+\operatorname{Gaussian}_{4 \sigma}\left(m=0.0^{\circ}, \sigma=.75^{\circ}\right)$.

Example: High-lift Wing-Body Flow with Geometric Uncertainty

Surface pressure coefficient at 50% span

Surface pressure coefficient

Mean error on upper surface

Zoom closeup in slat region

- Dense product, $L=4,81$ evaluations,
- Sparse product, $L=4,29$ evaluations,
- MLMC sampling, $L=4,56$ effective fine resolution evaluations, $M_{I}=\{30,120,480,1920\}$.

Concluding Remarks

Low cost quadratures with computable error estimates have been presented for the calculation of moment statistics

- Dense tensor product quadrature,
- Sparse tensor product quadrature,
- Multi-level Monte Carlo-Finite Volume sampling.

Combined uncertainty and error bound estimates

- quantify the overall accuracy of computed statistics,
- quantify the impact of UQ numerical errors on computed statistics,
- quantify the impact of CFD numerical errors on computed statistics,
- provide a guide for the allocation of computational resource when performing practical CFD calculations.

Ongoing work includes the extension of error bound techniques to the calculation of output probability densities, $\operatorname{pdf}(J(u))(x, t)$

