

ACES Preliminary Results Supporting Selection of SARP Well-Clear Definition

Confesor Santiago Marcus Johnson Doug Isaacson

TCAS Model Summary

- As a proxy for whether a TCAS Corrective RA would be presented we use model published by NASA Langley in GNC 2013 paper
- Given UAV encounter, TCAS RA model is computed from standpoint of the intruder (assumed TCAS equipped)
- At every cycle as intruder encounters UAV, we compute if Equation (12) and Equation (14) are true, then its marked as a TCAS RA
- Mathematical model is the same as the one used by NASA and MIT-LL for well-clear definition (modTau and time to co-alt)
- However, altitude dependent thresholds are used based on intruder's own altitude
- Also, there is a single tau threshold (for SARP we decoupled modTau and vertTau)

TCAS RA Model Altitude Dependent Thresholds

Own Altitude	e (ft) SL	Tau (sec)	DMOD (nmi)	ZTHR (ft)	ALIM (ft)	HMD (ft)
1000 - 235	3	15	0.20	600	300	1215
2350 - 500	00 4	20	0.35	600	300	2126
5000 - 1000	00 5	25	0.55	600	350	3342
10000 - 200	000 6	30	0.80	600	400	4861
20000 - 420	7	35	1.10	700	600	6683
> 42000	7	35	1.10	800	700	6683

Intruder Altitude: 2,000 ft - 17,999ft

* Source: "A TCAS-II RESOLUTION ADVISORY DETECTION ALGORITHM," Cesar Muñoz, Anthony Narkawicz, and James Chamberlain, AIAA Guidance, Navigation, and Control Conference, 2013.
Table 1: TCAS Sensitivity Level Definition and Alarm Thresholds for RAs

TCAS RA Model

```
[(h <= ZTHR) or
(0 <= vert_tau <= tau_thresh)]
```


TCAS RA Metrics

- Unmitigated
 - Probability of WCV with TCAS RA prior to WCV
- Mitigated
 - TCAS RA rate (per flight hour)
 - No presenting today (August)

TCAS-RA Unmitigated ACES Result

Probability of Well-Clear Violation (WCV) with TCAS RA prior to WCV

- Assumption: Intruders (manned) experiencing TCAS-RA's while UAS DAA system detects it as well-clear is undesirable.
- The smaller the better

Number of WCVs with TCAS-RA prior to WCV

Total Number of WCVs

To measure TCAS RA used data from 2 seconds prior to WCV

TCAS-RA Unmitigated ACES Result

TCAS-RA Unmitigated ACES Result

Illustration of Typical USAF Case with TCAS-RA

Lon

- A lot of the time, TCAS-RA model which is based on modTau triggers further out than the length of the horizontal cone for head-on and crossing encounters
- More of an issue in the modTau, rather than the Z_THR

Well-Clear Volume Penetration Rate per Flight Hour

- Intuition tells me the lower the rate the better.
- The complement is interesting, because the higher the rate points to presumably that the well-clear definition is larger, which may make the system safe, however may not be acceptability to the ATC.
- There is a tradeoff here...

Number of WCVs

Number of flight hours

