

ANCF at UND Commissioning Test Highlights GRC AAPL vs UND White Field

Acoustics Technical Working Group Meeting
Langley Research Center
10-April-2019

Dan Sutliff / NASA GRC Acoustics Branch

National Aeronautics and Space Administration
Aeronautics Research Mission Directorate
Advanced Air Vehicles Program
Advanced Air Transportation Technology Project
Aircraft Noise Reduction Technical Challenge

HISTORY

- née **ACTIVE** Noise Control Fan
- Originally built as part of the AST/QAT engine noise reduction programs in ~ 1992
- Initial Operation in 1994 / **1995**
- Highly flexible, fundamental test bed
- Multiple configurations, including rotor alone
- 4-foot diameter ducted fan 75 HP electric motor
- Low speed: Ω =1886 rpm, V_{tip} ~400 ft/sec, M_{duct} ~ 0.14
- Built to evaluate active noise control technologies and develop a duct mode database
- In early 2000's upgraded to 200 HP motor: Ω =2500 rpm, V_{tip} ~525 ft/sec, M_{duct} ~ 0.2

Renamed to
Advanced Noise Control Fan
when research emphasis changed.

NASA/SP-2019-643 AIAA-2019-####

"The Advanced Noise Control Fan:
A 20 Year Retrospective of Contributions to
Aeroacoustics Research"

2005 2010 2015

1995 2000

Active Noise Control

Unique Fan Noise Reduction Techniques

Novel Liner develop

Array development / Rotating Rake enhancement

HISTORY

Problem:

- 1994 2013: Low-TRL significant and prolific collaborative research performed on ANCF enabled the advancement of multiple noise technologies. (NRAs/SBIRs/AARC/STTR/SRF,etc).
- 2014 2016: Funding structure is limited more emphasis on broadband. Innovative approaches were needed to maintain the capabilities of the ANCF rig for advancing low-TRL fan acoustic research.

Solution:

- Develop a formal relationship with a university to provide relevant research and STEM opportunities in the area of fan acoustics.
- Partner university will operate the (ANCF) at their location.

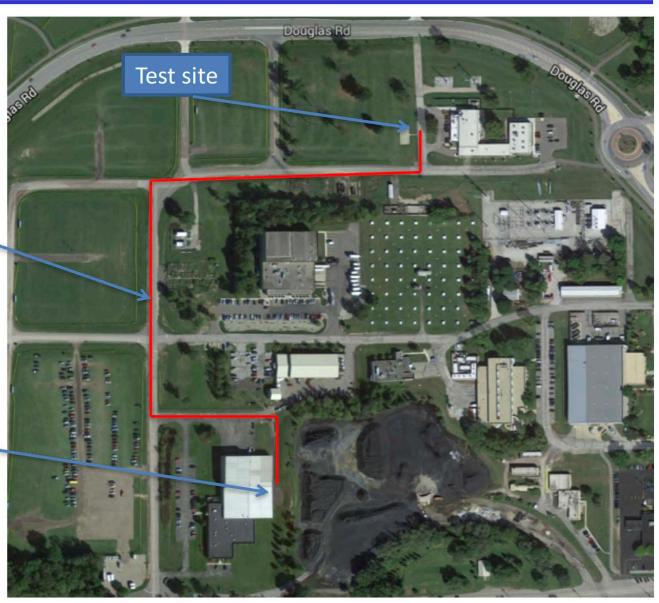
Activity:

- SAA developed and signed in 2016
- ANCF & 75 crates/tubs/boxes of supporting equipment transferred to ND in summer of '16.
- •1st test at ND in Feb 2017 linear array of ground mics (Knowledge transfer).
- Commissioning Test in September 2018 (Pole mics and wedges borrowed from AAPL as well as circular array of ground mics at multiple radii).

DISASSEMBLY

JUST A LITTLE SWEEPING UP...

AMP STORAGE/BUILD-UP AREA



DAILY MOVEMENT to/from TEST SITE

Storage at AMP

EXITING AMP

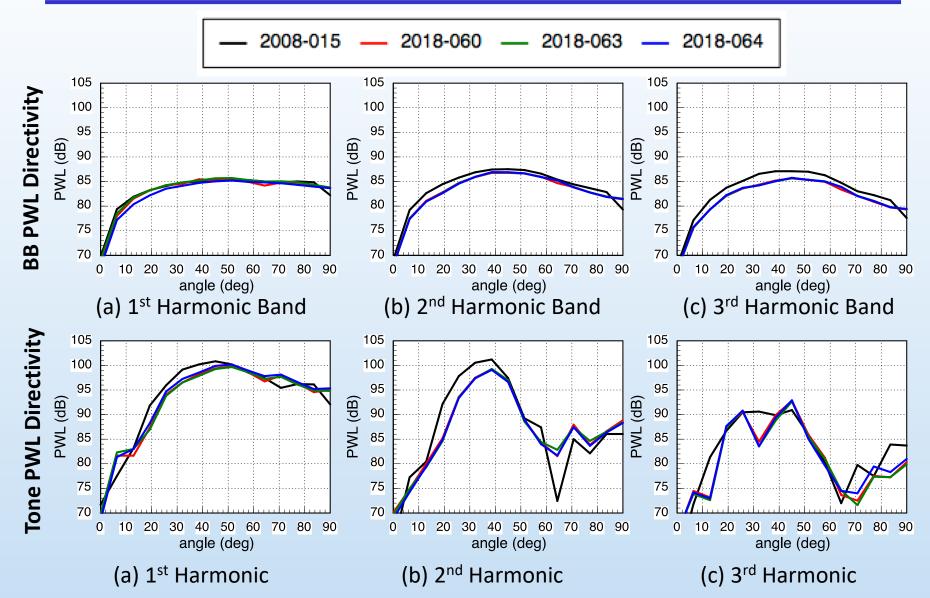
DAILY MOVEMENT to/from TEST SITE

AMP Building -> White Field Lab Test Area

COMPARISIONS

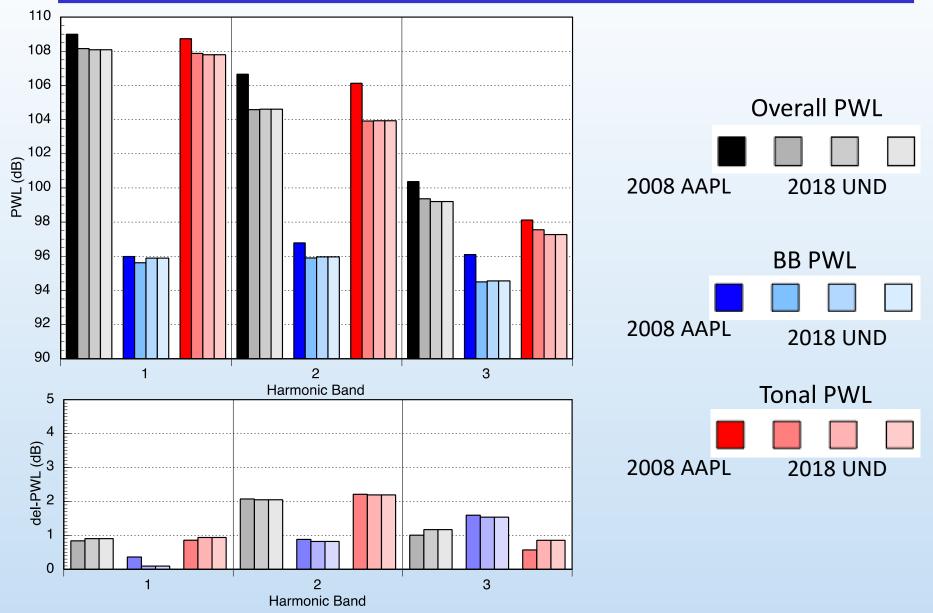
- Data acquired in 2008
- Rig CL @ 10'
- Indoor facility (mostly)
- Wall in close proximity
- Fixed location of rig
- Very low back ground noise
- Pole mounted microphones @ duct CL

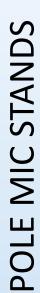
UND White Field



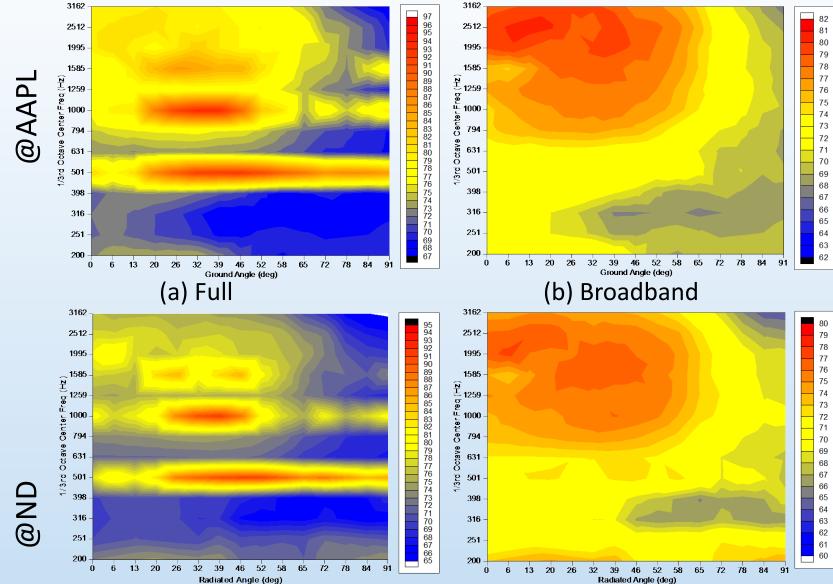
- Data acquired in 2018
- Rig CL @ 8'
- Outdoor facility
- Nothing in front
- Rig moved from storage daily
- Wind & traffic background noise
- Pole mounted microphones @ duct CL
 *ground mics re-sited daily

DIRECTIVITY

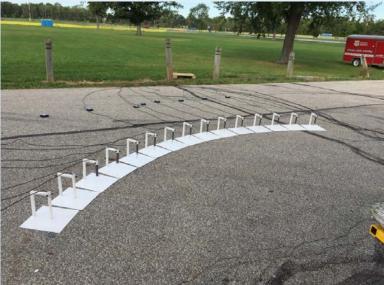




PWL



1/3rd OCTAVE SPECTRA

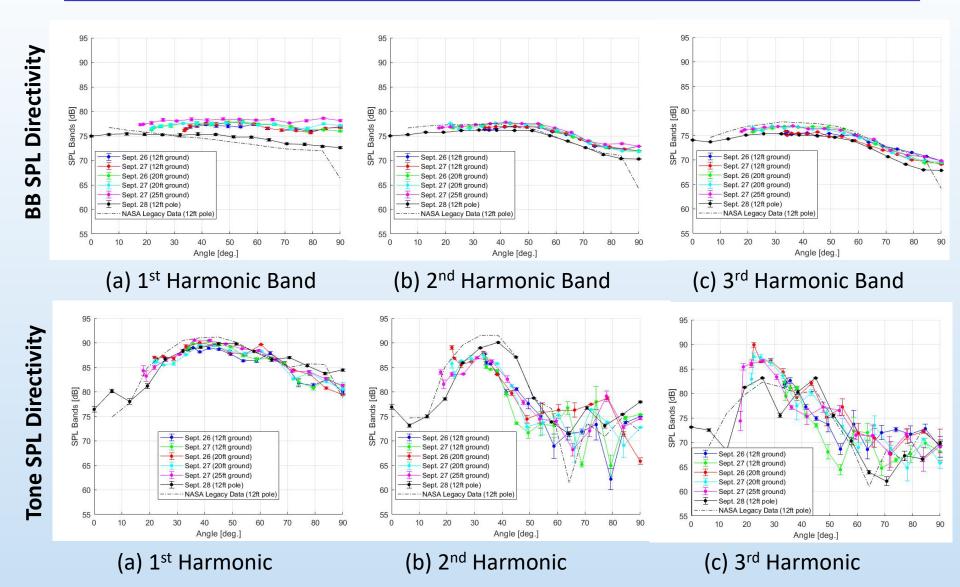


GROUND MICROPHONES

For practical operational reasons:

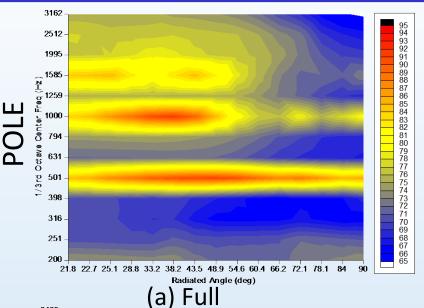
- UND will be using ground plane microphones.
- Unable to place in geometric farfield.

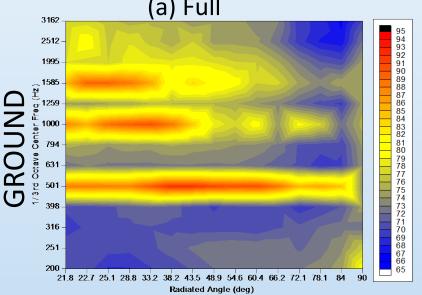
Azimuthal effects arise in this case in terms of direct comparisons – however that is an opportunity.

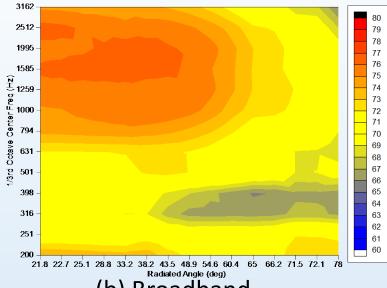


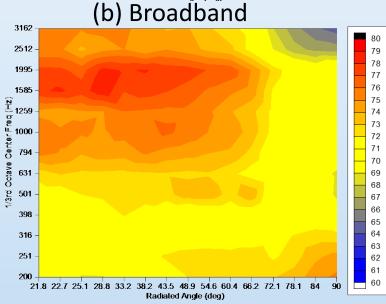
NAME	ANGLES 12 ft	ANGLES 12ft.	ANGLES 20ft.	ANGLES 25ft.
FF mic 1	0.0°	33.7°	21.8°	17.7°
FF mic 2	6.4°	34.2°	22.7°	18.8°
FF mic 3	12.9°	35.8°	25.1°	21.8°
FF mic 4	19.3°	38.2°	28.8°	25.9°
FF mic 5	25.7°	41.4°	33.2°	30.8°
FF mic 6	32.1°	45.2°	38.2°	36.3°
FF mic 7	38.6°	49.4°	43.5°	41.8°
FF mic 8	45.0°	53.9°	48.9°	47.7°
FF mic 9	51.4°	58.7°	54.6°	53.6°
FF mic 10	57.9°	63.7°	60.4°	59.6°
FF mic 11	64.3°	68.8°	66.2°	65.6°
FF mic 12	70.7°	74.0°	72.1°	71.7°
FF mic 13	77.1°	79.3°	78.1°	77.8°
FF mic 14	83.6°	84.7°	84.0°	83.9°
FF mic 15	90.0°	90.0°	90.0°	90.0°

GROUND MIC DIRECTIVITY






1/3rd OCTAVE SPECTRA



OBSERVATION

- Successful Handover of ANCF to UND
 - Usage by external customers / AATT
- Farfield Acoustic Levels Remarkably Similar
 - Slightly higher levels at AAPL(2008) compared to UND
 (Probably inverse of increase noted when ANCF was moved from center of AAPL to 'enclosed' FF arena wall in front creating extra turbulence)
- Pole vs Ground Microphone measurements
 - variations due to distance (i.e. closer than typical)
 - potential for exploration of alternate methodologies
- Outdoor Testing Challenges Learning Environment

The End of the Beginning

Thanks to GRC Team:

John Lucero, Mark Jacko, Lenny Smith, Bruce Groeing, Ed Myslewick T-FOME crew at AAPL

SPONSORED BY:

National Aeronautics and Space Administration

Aeronautics Research Mission Directorate
Advanced Air Vehicles Program
Advanced Air Transportation Technology Project
Aircraft Noise Reduction Technical Challenge

Thanks to UND Team

Scott Morris

Tamuto Takakra

Michael Bilka

Rusty Collins

Mark Ross

Kelvin Figueroa-Ibrahim

White Field Lab Team

