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Sponsored by NASA’s Transformative Aeronautics Concepts Program’s 
Transformational Tools and Technologies (T3) project 

• Substantial effort to investigate the origin of separation bubbles found in wing-
body juncture zones

• Primary goal is to gather validation level data, for future CFD code & turbulence 
model development

• Multi-year effort including several large-scale wind tunnel tests
• First set of entries just finished: Nov 2017-April 2018
• Planned Entries in 2019, 2020

Juncture Flow Experiment
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Juncture Flow Physics

Model proposed 
by Barber et al.

• Flow physics of juncture flows is complex
• Several vortical structures coexist: e.g., 

Horseshoe Vortex (HSV), corner vortex, stress-
induced vortex

• Many factors: incoming boundary layer momentum 
thickness, wing bluntness, and wing sweep, etc
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Juncture Flow LDV
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• Use internal Laser 
Doppler Velocimetry 
(LDV) system
– Mounted inside of 

the fuselage
– Movable three-axis 

traverse system
– Measure the flow 

field through window 
on fuselage

– Closest possible 
location to wing-
body juncture
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Juncture Flow Model Details
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Wing is a truncated 
DLR-F6



14x22 Wind Tunnel

Mach 0.2
Reynolds Number 2.4M 6



14x22 Wind Tunnel

Mach 0.2
Reynolds Number 2.4M 6

High Speed Leg



Introduction
• Juncture Flow (JF) Experiment

• Heavy collaboration between CFD and WT design 
team
• CFD used extensively in the experiment design
• Companion CFD runs for all risk assessment 

experiments
• Publications so far:

• AIAA 2016-1557, AIAA 2017-4127,  
AIAA 2016-4126, NASA TM-2016-219348, etc

• Tasked to perform various parametric studies using 
CFD:
• Effect of support hardware
• Effect of wind tunnel walls on measurements
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Introduction cont.
• CFD parametric studies approach:
• Run 14x22 empty tunnel
• Grid resolution study
• Tunnel speed calculations
• Solution acceleration approaches

• Run 14x22 with JFM installed
• Run with various support hardware 

included
• Determine effect of wind tunnel walls
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Introduction: Difficulties discovered
• CFD simulations of 14x22 empty tunnel

• CFD tunnel is very sensitive to changes in back pressure
• Long process: 

• Manual changes to back pressure
• Slow to propagate downstream

• Corner Separation
• CFD simulations with JFM installed

• Determining tunnel speed - calibration point covered by 
model

• Corner separation present in most cases
• Tunnel speed is very sensitive
• Inflow/Outflow BC issues 
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14x22 Empty Tunnel Studies
• Overset structured grids, built with Chimera Grid Tools

• Coarse (9.3M), Medium (41.6M), Fine (118.7M)
• Overflow 2.2N
• 3rd-Order Roe upwind RHS, ARC3D Beam-Warming scalar pentadiagonal 

LHS
• Low-Mach preconditioning
• Spalart-Allmaras turbulence model + rotational correction + QCR
• Fully Turbulent, Steady State
• Inflow BC: Total Pressure/Temperature (P0, T0)
• Outflow BC: Back Pressure (Pratio = P0/Pexit)
• Mach= 0.2, RE = 2.4 Million

14x22 Overflow Baseline Grid
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14x22 Tunnel Speed Calculation
• Tunnel Speed Calculation 

• Direct probe at (17.75,0.0,0.0) 
• Calibration point
• Model is often located here

• Calculated using wind tunnel method:
• Uses total pressure & static pressure “probe” values from their locations
• Calibrated equations -> tunnel speed
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14x22 Tunnel Speed Calculation
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Grid Calculated Mach Direct Mach Probe
Coarse 0.2023 0.1995
Medium 0.2029 0.2004
Fine 0.2025 0.2000
Mach values are nearly identical: can calculate wind tunnel 

speeds using same method



14x22 Grid Refinement (Overflow)
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• Mach number of 
tunnel vs iteration

• Tunnel speed is 
calculated using 
pressure probes

Coarse

Fine

Medium



14x22 Grid Refinement (Overflow)
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Medium



14x22 Grid Refinement (Overflow)
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• Spikes/drops caused by 
manual changes in back 
pressure

• Each change required 
10,000 steps to “settle”

• Solutions require 100,000 
to 1,000,000+ steps!

Coarse

Fine

Medium



14x22 Grid Refinement (Overflow)
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Fine

MediumCoarse



14x22 Grid Refinement (Overflow)
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• Coarse grid tunnel 
speed was extremely 
noisy 

Fine

MediumCoarse



14x22 Grid Refinement

• Red isosurfaces - reverse flow
• Large diffuser separation in Coarse grid
• Tunnel Mach number was “noisy” due to corner 

separation
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Coarse Medium Fine



Juncture Flow Model with WT walls
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JFM 8% model with
roll sting and mast

Using medium WT grid

Side View Test Section

Sting

Mast



JFM 8% Conditions 
• RE = 2.4M based on yehudi break chord 21.97 inches
• T = 560 Rankine (hot day in the tunnel, Q~55)
• Mach = 0.2
• Process:

• Speed calculation with WT walls computed with Static/Stagnation pressure 
probe calculations

• Inflow BC: Stagnation T & P, Outflow BC: Pback ratio (iterated)
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Top View

Side View

Top View

Side View



14x22 with JFM Corner Separation
14x22 JFM

14x22 JFM+Sting
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AOA 5 degrees

14x22 JFM+Sting+Mast

• Cases were very hard 
to converge

• Mach response to ratio 
changes were erratic



14x22 with JFM Corner Separation
14x22 JFM

14x22 JFM+Sting

19
AOA 5 degrees

14x22 JFM+Sting+Mast

• Most configurations at 
some +AOA had 
corner separation



14x22 Inflow/Outflow BC’s
• Inflow/Exit BC’s are based on inviscid assumptions: 
• Running regions near BC inviscid may help speed up 

convergence
• May reduce corner separation

• Blue sections are run as Inviscid
• Same exit pressure ratio (1.02188) used for both
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Inviscid Diffuser Extension

Inviscid Inlet + Inviscid Diffuser Extension



14x22 Inviscid BC’s (Overflow)

• Slice down middle of test section, mach contours
• Inviscid Inlet has a slightly lower speed in test 

section
• Very similar results 21

Inviscid Diffuser Extension

Inviscid Inlet + Inviscid Diffuser Extension



14x22 Inviscid BC’s (Overflow)

• Inviscid Inlet suppresses the separation present in the 
corners of the inlet

• Both suppress diffuser corner separation 22

Inviscid Diffuser Extension Inviscid Inlet + Inviscid Diffuser Extension



JFM 8% Installed in 14x22
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Top View

Side View

• Increment Analysis: Support Hardware, WT Extension
• 14x22 WT: JFM, JFM+Sting, JFM+Sting+Mast (42-46M Grid 

points)
• 14x22 WT Extended: JFM+Sting+Mast (84M-88M Grid Points) 

(Inviscid Diffuser)
• 14x22 WT Extended with inviscid inlet & diffuser (didn’t finish in 

time)



JFM 8% Support Hardware Effect
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JFM

JFM+Sting

JFM+Sting+Mast

Effect of the 
support 
hardware on:
• Wing/Bubble
• Solution

All results at 
AOA 5 degrees



14x22 JFM Support Hardware Comparison 𝜶=5.0º

14x22 JFM+Sting 14x22Ext JFM+Sting+Mast

14x22 JFM 14x22 JFM+Sting+Mast
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14x22 JFM ΔCp Comparison 𝜶=5.0º

14x22 JFM

14x22 JFM+Sting
14x22Ext JFM+Sting+Mast
 (base solution)
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14x22 JFM+Sting+Mast



14x22 JFM Bubble Comparison 𝜶=5.0º

14x22 JFM+Sting 14x22Ext JFM+Sting+Mast

14x22 JFM 14x22 JFM+Sting+Mast
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14x22 Tunnel Extension Effect
14x22 w/Extension
JFM+Sting+Mast

14x22 wo/Extension
JFM+Sting+Mast

AOA 5 degrees
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14x22 Tunnel Extension Effect
14x22 JFM+Sting+Mast

AOA 5 degrees

14x22 JFM+Sting+Mast 
w/Extension

Pexit ratio = 1.0196 Pexit ratio = 1.02185
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14x22 8% JFM Increment Summary
• Support Hardware
• Pressures were very similar for all results
• Bubble size was insensitive to support hardware, and 

tunnel extension (preliminary result) 

• 14x22 WT vs 14x22 WT with Inviscid Extension
• Suppresses the corner separation in the diffuser
• Back pressure does not need to be as high
• Extension Exit Pressure ratio is closer to empty tunnel 

value (1.022) 
• Tunnel speed settles out much faster

• Need to still look at effect of adding Inviscid Inlet on JFM
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Future Work
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• Compare CFD WT to CFD Free Air
• Compare with WT data once available

• Cp profiles, oil flows
• Velocity & Reynolds stress profiles

• Automate back pressure ratio (PID controller)
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Discussion
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• How else can we improve modeling with WT walls?

• What do we need to do to this dataset to best help 
CFD community improve their models?



Preliminary CFD Free Air vs CFD WT

35

CFD Free Air

CFD WT

AOA 5 degrees


