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Long-duration space missions will benefit from closed-loop life support technologies that minimize mass,
volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of
essential vitamins and nutrients can address the documented problem of degradation of stored food and
supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-
demand system for the production of various compounds that are beneficial to human health. A critical
objective in the development of this approach for long-duration space missions is the effective storage of the
selected microorganisms. This research investigates the effects of different storage methods on survival rates
of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has
been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass
and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative
damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here,
including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to
damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an
attempt to maintain higher survival rates, the effect of temperature during long-term storage was
investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors
than vegetative cells of either strain, and maintain high viability rates even after one year at room
temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes
with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being
sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being conducted.

Nomenclature

CFU = colony forming unit

FDA = food and drug association

ISS = International Space Station

MSG = monosodium glutamate

oD = optical density

ROS = reactive oxygen species

RPM = rotations per minute

YPD = yeast extract, peptone, dextrose (a growth media for yeast)
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I. Introduction

Throughout long-duration space missions essential amino acids and nutrients must be available in adequate
quantities to maintain crew health and safety. Deficiency in any essential nutrient can have a detrimental effect on
human health and therefore mission success. Shelf-life studies have indicated that some nutrients, such as vitamins
C and K, folate, and thiamin to name a few, are susceptible to substantial degradation over time.! Additionally, not
all required nutrients have been evaluated. Evidence indicates current storage and food processing techniques are not
sufficient for the preservation of certain nutrients during extensive long-duration missions without intermittent
resupply.? Efforts to remediate these problems have included the use of vitamin supplements, the development of
enhanced food storage techniques with temperature control, and the implementation of bioregenerative food systems
including crop growth.!® To add to this ongoing research, we have begun developing and testing a low mass
production system for on-demand synthesis of nutrients using the edible yeast Saccharomyces cerevisiae. In situ
production of nutrients in space could serve to ameliorate the health risks associated with the decrease in
bioavailability of certain nutrients in foods stored for an extended duration.®

In situ production of essential nutrients by S. cerevisiae and S. cerevisiae var. boulardii is dependent on the
survival of the organisms. For this production system to be successful, yeast cells must maintain their viability
through multiple years of storage for rapid, on-demand revival and synthesis of the compound of interest. The
efforts presented in this paper involve developing methods to enable the long-term viability of yeast spores and
vegetative cells. Multiple mechanisms were employed and tested to increase longevity including dehydration,
oxygen exclusion, selective metabolic engineering, and the use of protectants. Testing of various treatments via
revival in an edible media is ongoing, and is anticipated to continue for a period of three years. The results of these
tests are leading to knowledge that informs additional long-duration storage testing. This work is intended to
culminate in a flight experiment where treatments are stored for up to three years on the International Space Station
(1SS), with intermittent revival testing and subsequent ground characterization of growth and expression of target
nutrients.

Il1. Background

S. cerevisiae has an extensive history of metabolic engineering making it an ideal organism for production of
compounds with dietary, pharmaceutical, or therapeutic applications.* S. cerevisiae has already been used for the
production of important compounds such as insulin, beta-carotene, and artemisinic acid (an anti-malarial drug
precursor) among others.>” The same tools for genetic engineering of S. cerevisiae can also be applied to S.
boulardii. Although both S. cerevisiae and S. boulardii have been identified as the same species, both of which are
edible and have been granted “Generally Regarded as Safe” status by the Food and Drug Administration (FDA),
they also exhibit key genetic differences.®® S. cerevisiae for example, is capable of undergoing sporulation allowing
it to drastically reduce its metabolic activity and survive in extreme environments. S. boulardii is unable to produce
spores, presenting a potential disadvantage for long-term storage. However, S. boulardii has been characterized as a
probiotic. These characteristics make both strains desirable for development and testing of in situ nutrient
production.

In addition to the benefits of the nutrients being produced by the yeast, probiotic organisms are favorable because
they are a prophylactic. S. boulardii has been implicated in the treatment of various gastrointestinal disorders such as
antibiotic-associated diarrhea infections possibly by aiding in the re-establishment of normal gut microbiota.?%-%2 S.
boulardii can also inhibit the growth and adherence of opportunistic pathogenic bacteria and yeast either directly or
by excretion of inhibitory compounds.*** Space flight has been shown to alter the physiology and composition of
the gut microbiome.’>'" Reduction in the diversity of the normal microbiota can potentially lead to infection by
opportunistic pathogens. Furthermore, it has been shown that previous NASA Space Transportation System (STS)
missions as well as simulated microgravity experiments increase virulence factors of some pathogenic organisms.®
20 Pre- and probiotics can potentially offset the effects of an altered microbiome. To utilize probiotic S. boulardii
vegetative cells, experiments must be conducted to optimize survival during long-duration storage, as vegetative
cells typically have a reduced shelf-life compared to spores.

S. cerevisiae and S. boulardii are anhydrobiotes that are capable of surviving in the dehydrated state as vegetative
cells.? The desiccation process involves the removal of intracellular water allowing the yeast to undergo a reversible
delay in their metabolism. Metabolic reduction combined with the yeast’s innate ability to withstand desiccation
ensures a relatively high survival directly after dehydration as well as during long-term storage.?? Dehydration still
imposes major stresses on the cell causing a global change in its metabolism and structure. The removal of water can
cause ruptures in the plasma membrane, increased intracellular crowding, and damage to the cell wall. %2
Furthermore, as water molecules are replaced by air, oxidative damage occurs causing a build-up of reactive oxygen

2
International Conference on Environmental Systems



species (ROS) within the cell.?®?® ROS can damage proteins, DNA, and cause lipid peroxidation in cell
membranes.?® Modifications of vital structures that occur during desiccation can cause irreparable damage resulting
in cell death.

In order to mitigate some of the damage caused by freezing and desiccation, we have evaluated the use of
protectants. Sugars and sugar alcohols such as lactose, sucrose, trehalose, and xylitol have often been used as
protective agents during dehydration and freezing.?"?® Trehalose, one of the most commonly used protectants for
dehydration, is a non-reducing disaccharide found to naturally occur in various organisms including yeast,
nematodes, and plants.?® Trehalose has been cited as providing exogenous protective effects during freezing and
dehydration, as well as endogenous effects on yeast survival during long-term storage in a desiccated state.3%3! Two
significant models have been proposed to explain the sugar’s protective mechanism of action. The water
displacement model suggests sugars form hydrogen bonds with soluble proteins, stabilizing their three-dimensional
structure as water diminishes.®? The vitrification model suggests that at low water levels, sugars form a glassy
matrix, acting as a shell around proteins and thus protecting the cell from desiccation stress.® These two models are
unlikely to be mutually exclusive.

Trehalose has been shown to increase cell viability when used for lyophilization, a process of freeze-drying by
vacuum.® Commercial industries have long used lyophilization for long-duration storage of microbes.® Studies
have shown lyophilized vegetative S. cerevisiae stored under vacuum at 5 °C can last up to 20 years with no major
decline in viability after dehydration.?? Alternate methods of drying include spray drying, air-drying, and vacuum
drying at ambient temperatures. The major stresses affecting the viability of stored yeast cells in the dehydrated state
are temperature, residual water content, and exposure to oxygen. Anhydrobiotic organisms have an optimal water
activity between 5-8% for long-duration storage.?® These factors have been considered when designing experiments
to optimize dehydration and storage conditions for long-duration storage of S. cerevisiae spores and vegetative cells,
as well as S. boulardii vegetative cells. Although it is ideal to store S. cerevisiae in its spore state, genetic
engineering of the yeast to produce desired nutrients may interfere with its ability to form spores. Therefore, S.
cerevisiae vegetative cells will be tested for long-term viability.

Anhydrobiotic engineering of S. boulardii is being explored as a more robust method to maximize long-term
survival in the vegetative state. The gene NTH1 encodes for trehalase which is localized in the cytosol and has an
optimal activity at neutral pH. NTH1 is the major enzyme involved in the hydroylization of the non-reducing
disaccharide trehalose into two glucose molecules.®” Trehalose is a storage carbohydrate in yeast and has been
shown to accumulate in cells with nutrient-poor conditions®#° It has also been implicated in desiccation tolerance
during long-term storage.®! As water is removed from the cell, intermolecular non-polar interactions occur that
normally cause protein aggregation. Tapia et al.3* have shown that long-term desiccation leads to the loss of
molecular chaperone function that normally inhibits protein aggregation (eg. HSP proteins). Intracellular trehalose
may act as a replacement molecular chaperone, inhibiting such protein aggregation and misfolding. The NTH1
deletion resulted in higher trehalose stores and, as a result, an increased viability during long-term storage of S.
cerevisiae cells.?®3!

In order for In situ production of nutrients in space to occur, the yeast must produce a desired amount of the
compound of interest within a reasonable time. The successful revival of the yeast is dependent on the cells’ ability
to maintain a high viability during long-duration storage. This paper will outline experiments aimed at finding
optimal conditions for the long-term preservation and storage of both spores and vegetative cells.

I11. Materials and Methods

The methods in which S. cerevisiae spores and S. cerevisiae and S. boulardii vegetative cells were dehydrated,
stored, and revived are outlined in Figure 1.
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Figure 1. Flow chart of methods for long-duration storage studies of S. cerevisiae spores and S. cerevisiae and S.
boulardii vegetative cells.

A. Yeast Strains and Media
The yeast strains used in this study are Saccharomyces cerevisiae Y55-3560 and Saccharomyces boulardii
MYA-796 (ATCC). Yeast cells were revived in 10 g/L yeast extract, 20 g/L soy peptone, and 100 g/L glucose
(YP5D), or 20 g/L glucose (YPD), or an edible version of YP5D composed of edible yeast extract made by
Ohly®, PeptoPro® casein based protein powder, and dextrose. Cells were grown at 30 °C in a shaker incubator
at 200 rpm or on YPD plates at 30 °C.

1. Sporulation: An overnight culture of Y55 was grown in YPD from frozen stock. Cells were
transferred to pre-sporulation media; 10 g/L yeast extract, 20 g/L peptone, and 10 g/L potassium
acetate (YPA), and allowed to grow for 18 — 24 hours. Cells were then transferred to sporulation
media; 10 g/L potassium acetate supplemented with all necessary amino acids and allowed to
sporulate for 72 hours. Hemocytometer counts were used to determine sporulation efficiency.

2. Vegetative cells: An overnight culture of Y55 or MYA-796 was grown from frozen stock. Cells were
transferred to a baffled Erlenmeyer flask containing YPD at an optical density (OD) of 0.02 and
allowed to grow to stationary phase at a temperature of 30 °C in a shaking incubator (Innova 4300,
New Brunswick Scientific) at 200 rotations per minute (rpm).
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B. Dehydration

1.

C. Storage
1.

D. Revival
1.

Spores — Y55 spores were washed 2 times with water and concentrated to a weight between 0.06 to
0.1 grams. Spores were dehydrated by vacuum at an ambient temperature, air-drying, or
Iyophilization.

Vegetative cells — Stationary phase vegetative cells were collected from batch cultures and washed 2
times with water.

i. Lyophilization — Spores and vegetative cells were suspended in water or an edible
cryoprotectant, frozen at -80 °C, and dehydrated on a manifold FreeZone console freeze
drying system (Labconco), overnight.

ii. Air Drying- Vegetative cells were dehydrated in a biological hood or in an anaerobic
chamber at room temperature. 100 pL aliquots were placed in 96 well plates, centrifuged,
and 30 pL of water was removed. Dehydration time varied by experiment and typically
required up to three days.

iii. Vacuum — Spores and vegetative cells were placed in a Thermo Scientific Savant 1SS110
Speed Vacuum concentrator until dried.

Once dehydrated, vegetative cells or spores were purged with nitrogen, and either stored in an
anaerobic chamber, or sealed in nitrogen purged foil lined bags. Spores were either stored in contact
with the edible media itself or separate inside Eppendorf tubes. The foil lined bags and edible media
were sterilized by electron beam processing (44 kGy) prior to the addition of test organisms. Cells
were stored at room temperature unless listed otherwise.

Spore Growth Curves — Spores were rehydrated in YP5D or edible media and measured by OD. For
OD measurements spores were suspended in YP5D and sonicated on ice for two minutes to disperse
spore clumps. Once dispersed, spores were placed in flasks containing YP5D at a starting OD of 0.5
and measurements were taken every hour for seven hours omitting the four hours for germination. A
twenty-four hour time point was also included to determine OD at the end of fermentative growth.
Spore Biomass — Spores were rehydrated in YP5D and allowed to growth over 16 hours. Biomass was
measured by the percent change in biomass starting with initial and ending mass. After 16 hours
spores were washed 3 times with water, lyophilized, and weighed as dry mass. Accurate plate counts
of viable spores were unobtainable due to spore clumping and were rejected as a test method.
Vegetative Cell Viability — Vegetative cells were rehydrated in dilute phosphate buffer (1:8), serially
diluted, and plated on YPD. The relative viability was determined by colony forming units per
milliliter (cfu/mL) as compared to the average cfu/mL of the control plates prior to dehydration (done
in biological triplicates). Each experiment was run in triplicates.

IV. Results

A. Protectants

A variety of protectants have been utilized to increase freezing and desiccation tolerance for long-duration
storage.®® However, all protectants utilized in this application should be FDA approved and safe for crew
consumption. The National Collection of Yeast Cultures has successfully used an edible mixture of skim milk,
trehalose, and monosodium glutamate (MSG) as cryoprotectants with lyophilization. We have tested this mixture for
the lyophilization of S. cerevisiae spores. Results indicate lyophilized spore viability is higher when using
cryoprotectants, as opposed to only water (Fig. 2). Proline has also been found to be an effective cryoprotectant.* In
this instance, the substitution of proline for skim milk was also successful (Fig. 2). Using protectants during ambient
temperature vacuum drying had a negligible effect on viability. As such, they will not be pursued further for vacuum
drying testing. All tests of lyophilized spores had lower viability than their vacuum-dried counterparts, regardless of
use of cryoprotectants, suggesting the freezing step during lyophilization is overly damaging to the yeast spores.
Lyophilization was therefore dropped as a method of dehydration of spores for remaining experiments.
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Trehalose was also used as an exogenous protectant in
experiments to determine the viability of S. boulardii and S.
cerevisiae vegetative cells in YPD media for up to seven days
directly after air-drying. Both strains were dehydrated in a 10%
trehalose mixture or water. The survival of yeast cells, after 3,
5, and 7 days of growth, were tested to determine if time spent
in stationary phase had any effect on long-term survival of
vegetative cells. S. boulardii was grown in YPD for at least 72
hours to ensure the transition from fermentation to respiration.
The transition to respiration is a key factor in increasing
desiccation tolerance in yeast.*> When S. cerevisiae begins
exhausting a necessary nutrient such as glucose, it transitions
into a quiescent state, which is characterized by an arrested cell
cycle and the accumulation and conservation of storage
carbohydrates such as trehalose and glycogen.*® Quiescent cells
form during stationary phase, which typically occurs in rich
(YPD) liquid media after three to five days of growth,
depending on the cell line’s doubling time.* Stationary phase
cells tend to have higher survival after desiccation and during
long-term storage. 342

Trehalose had a negligible effect on the survival of S.
boulardii and S. cerevisiae vegetative cells once they reached
stationary phase and were dehydrated by air-drying. The
viability of S. boulardii tends to decrease as more time is spent
in stationary phase, which is consistent with data by Calahan et
al.*2 of S. cerevisiae (Fig. 3A). However, our Y55 S. cerevisiae
strain did not show a significant reduction in viability over time
when compared to S. boulardii. (Fig. 3B). Longer-duration
storage testing is needed to determine if increased time spent in
stationary phase will affect long-term viability.

B. Dehydration and Storage

Three different methods of dehydration were employed to
determine maximum initial viability directly after desiccation
for both yeast spores and vegetative cells. Vacuum dehydration
resulted in a higher viability when compared to lyophilization
for S. cerevisiae spores (Fig. 2) and was used as an internal
parameter to test viability during air-drying. Multiple
parameters were tested to determine the effects of temperature
and water on yeast viability during desiccation and long-term
storage. An average of 0.06 grams of spores were air-dried on
Parafilm® situated over 24 well plates and covered to reduce
potential for contamination (Fig. 4C). Spores were air-dried as
flat discs to maximize their surface area, thereby reducing
drying time and moisture content. All spores were sealed in
aluminum lined bags in an anaerobic chamber to remove
oxygen, and subsequently stored at room temperature. Spores
were rehydrated in YP5D and grown for 16 hours before final
biomass was determined. The first experiment was to
determine effects of temperature on sporulation rates. Normally
S. cerevisiae cells are placed in sporulation media (1%
potassium acetate) at 30 °C.** In our experiments with S.
cerevisiae, Y55 has a sporulation efficiency of approximately
85% (spores to vegetative cells). By reducing the temperature
during the last phase of sporulation we hoped to increase
sporulation  efficiency and reduce vegetative cell
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contamination. However, room temperature sporulation did not significantly affect sporulation for the Y55 strain or
the viability for long-term storage. Spores were also air-dried within a desiccator to determine the effects of
moisture on spores during storage. Water was shown to negatively affect spore viability as seen in Figure 4A.
Spores stored in water after six months had very few surviving cells after 16 hours of growth in YP5D. Spores
were also dehydrated at 5 °C to determine the effects of temperature on spores during dehydration. After one year
of storage there is no significant difference between any of the parameters that were dried by air-drying. Spores
dehydrated by vacuum are showing a decrease in viability after one year.

Storage temperatures were also tested to determine if temperature would have any effect on long-term storage of
spores (Fig. 4B). Spores were stored in the same way as the previous experiment, except storage occurred at both
room temperature and at 4 °C. After six months of storage, we have yet to observe any significant decline in

viability between room temperature and 4 °C. These two experiments will extend for the duration of two years.
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Figure 4. S. cerevisiae spore storage. Spores were stored anaerobically in aluminum lined bags and
revived in YP5D for 16 hours. Germinated cells were washed 3 times, frozen, lyophilized, and weighed
for final biomass. (A) A. Spores grown at room temperature in sporulation media B. Spores
dehydrated in a chemical desiccator C. Spores air-dried at 5 °C D. Spores stored in water E. Spores
dehydrated by vacuum (B) spores stored at room temperature or at 4 °C. (C) Image of S. cerevisiae
spores air-drying in 24 well plate of parafilm with lid slightly ajar to allow for dehydration.

A three-year storage study is currently underway for S. cerevisiae spores (Fig. 5). Spores were dehydrated by
vacuum and stored in the same way as experiment 4A. Spores were revived in YP5D at a starting OD of 0.5 or
grown in YP5D for 16 hours to determine final biomass. Growth curve and biomass data were collected to
determine loss in viability over time. The initial drop in viability shown in Figure 5A is likely a result of vegetative
cell death. Approximately 15% of the total culture after sporulation is comprised of vegetative cells, due to
incomplete sporulation. Samples stored for one year showed on average 10% less biomass than samples stored for 1
week, a statistically significant difference (Fig. 5B). These results are promising in that the loss in viability is
relatively minimal for spores stored up to one year at room temperature.
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Figure 5. S. cerevisiae spore revival in YPD 5x dextrose: Experiment (A) and (B) were dehydrated by vacuum. (A) Prior to
vacuum, an untreated initial sample of spores was stored at 4 °C for 24 hours and revived as a baseline to measure later viability
experiments. Growth was measured over 10 hours allowing for a four hour gap required for germination. (B) Percent change in
biomass is measured by the starting dry mass of the dehydrated spores compared to the final biomass. Spores were allowed to
germinate and grow for 16 hours in YP5D, washed 3 times with water, frozen, lyophilized, and weighed for final biomass.
Biomass loss from one week compared to one year represents a statistically significant difference. Asterisk represents the
statistical significance (p <0.005, t test)

C. Anhydrobiotic Engineering

To enhance survival during long-duration storage of S. 100
boulardii, alternative methods to increase viability are
being sought. We have created a knock-out of the neutral
trehalase gene NTH1 using the Clustered Regularly 80
Interspaced Short Palindromic Repeats-Cas9 based
genome editing tool. The gene NTH1 is involved in the
hydrolyzation of intracellular trehalose. As discussed,
trehalose has been implicated in the prevention of
cytoplasmic and membrane protein aggregation, which
occurs during desiccation. It has been shown that
increasing endogenous trehalose stores by reducing the
yeasts’ ability to breakdown intracellular trehalose will
increase its ability to survive in the desiccated state
longer.?83! The NTH1 knockout has already been tested in
S. cerevisiae, but never in S. boulardii. Early data shows a 0 -
significant difference in viability between the wild type Initial 1 Month 3 Month
and the NTH1 deletion strain (Fig. 6). However, longer-
duration testing will be needed to determine if a NTH1 Figure 6. Desiccation tolerance of wild type and
deletion will follow this pattern of increased viability. It is NTH1 mutant S. boulardii. After one month of
important to note that after three months of storage, S. ggzﬁreat'iﬁ” \t/ri]:bm:d t};ge ggg'”a?ggwfoatﬂg”'&'gaHnlt
boulardii NTH1 knockout has not had a significant decline mutant Asterisky represengts the statistical
in viability directly after desiccation. Further testing is signiﬁéance(p<0.005, ¢ test)
required to conclude the rate of decline in viability over ' B
time.

mNTH1 Deletion
Wild Type

Desiccation Tolerance
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V. Conclusion

As evidenced by the above results, stored S. cerevisiae spores have maintained high viability over the course of
one year. This indicates that the In situ production of nutrients by S. cerevisiae represents a promising approach to
problems of nutrient degradation in long-duration space missions. Continued testing is needed to verify that this
approach works over multiple years. In the event cell viability continues to decline in subsequent years, a higher
starting biomass can be added to the package to offset cell loss over time.

These experiments have contributed to our understanding of optimal conditions for long-duration storage of
spores and vegetative cells. We have found that vacuum drying and air-drying spores result in a similar survival
directly after dehydration. Lyophilization resulted in a lower initial viability and continued to decline over time.
Continued testing is needed to determine the effects of temperature, desiccant, air-drying and vacuum on long-term
survival of spores. For vegetative cells, we have found that air-drying provides the highest initial viability directly
after desiccation. Once S. boulardii and S. cerevisiae reach stationary phase, trehalose has minimal to no effect on
the organisms’ ability to survive desiccation. Early stationary phase appears to be the optimal time for desiccation to
occur as cell viability continues to decline over time for S. boulardii. However, longer-term data is needed to
determine the effects of time spent in stationary phase on long-term survival on both strains. The anhydrobiotic
engineering of S. boulardii will require longer-duration testing to determine if the NTH1 deletion follows a pattern
of increased viability over time. We have found that optimal storage conditions are those in which the yeast is stored
with minimal residual water, and without oxygen. Storage temperature may also affect the long-term viability of
spores however, further testing is required. Our data shows that after six months there has been no significant
difference between storage at room temperature versus 4 °C.
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