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Overview
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• Earth science applications

• Lessons Learned

• Outlook and conclusion



Deep Learning

• A subfield of machine learning

• Algorithms inspired by function of the brain

• Scales with amount of training data

• Powerful tool without the need for feature engineering

• Suitable for Earth Science applications



• Facebook 
• Translates about 2 billion user posts per day in more than 40 languages
• Photo search and photo organization

• Microsoft
• Speech-recognition products: Bing voice search, X-Box voice commands
• Search rankings, photo search, translation systems

• Google:
• Almost all services

• Medical Science
• Diagnosis Language translation

• Playing strategy games
• Self driving cars

Recent Deep Learning Successes



• Phenomena identification
• Hurricane intensity (wind speed) estimation
• Severe storm (hailstorm) detection 
• Transverse bands detection
• Entity extraction for knowledge graph creation
• Ephemeral water detection

Deep Learning for Earth science at MSFC



• The Dvorak technique
• Vernon Dvorak (1970s)
• Satellite-based method
• Cloud system measurements
• Development patterns corresponds to T-number

• Deviation-angle variation technique (DAVT)
• Piñeros et al. (2008)
• Variance for quantification of cyclones
• Calculates using center (eye) pixel
• Directional gradient statistical analysis of the brightness of images

Tropical Cyclone Intensity Estimation



Issues

• Subjective/Uncertainty

• Lack of generalizability

• Inconsistency

• Complexity

Can we objectively predict wind speed from images?



• Images
• GOES-IR
• From 2000 to 2017
• East Pacific and Atlantic

• Cyclone data
• National Hurricane Center (http://www.nhc.noaa.gov) (HURDAT and HURDAT2)
• Hurricane Research Division (http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html)

• Preprocessing
• Subset GOES +/-5 deg. around eye
• Nearest 1kt wind speed interval
• Removed >70% missing data

Data



Data Distribution
• Unbiased data splitting

• Year 2000 – 2016 Training
• 97152 images

• Year 2017 Testing
• 4840 images



• Interpolate to increase even more
• 2 hours interpolated image differences 

2 hour interpolated image differences 

Data augmentation



• (Training + Validation) 70% - 30% (Test)
• (Training) 75% - 25% (Validation)

Training, test, and validation



• Preprocessing
• Resize to 232 x 232 for input
• Subtract image mean from training images

• GRID K520 4GB GPU
• Stopped at 90% validation accuracy
• 65 epochs in 8 hours

Training



Feature maps from second convolution

Visualization



• Model with around 90% of validation accuracy
• Tested against 14,345 test images (Atlantic + Pacific)

• Confusion Matrix
• Classification Report
• Accuracy
• RMS Intensity Error

Initial performance



• Top-1: exact-hits
• Top-2: exact-hits + 2nd-hits

Accuracy



• Our model
• Across Atlantic and Pacific
• Achieved RMSE of 9.19kt

• North Atlantic
• Piñeros et al. (2011): 14.7kt 
• Ritchie et al. (2012): 12.9kt 

• North Pacific
• Ritchie et al. (2014): 14.3kt 

Error Metrics



Adapted from Stevenson et al. (2014).  Time series of satellite-derived intensity estimates (circles) for Hurricane 
Earl (2010), added to best track intensities and lightning flash rate time series.

Detailed look: Hurricane Earl, 2010



• Deploying model in production

Hurricane Wind Speed Estimation Portal



• Deep Learning Black Box
• Training Data
• Deploying the model in production
• Boundary between data and code
• Consistent training data

Challenges



• How it works?

• “Self-learning machines”

• Uncertainty

• Building trust

Deep Learning Black Box



• Algorithms can be fine tuned for customized applications

• Successful applications have one thing in common

• Large number of data points needed to learn large number of 

parameters

• Barrier for using deep learning

• Data Training Data is the NEW oil

• Manually creating labeled training data is bottleneck

Large scaled labeled training data



VGGNET DeepVideo GNMT
Task Identify image Identify video Translate

Input Data Image Video English Text

Output 1000 Classes 47 Classes French Text

# of Parameters ~140 million ~100 million ~380 million

Labeled Data Size 1.2 million images 1.1 million videos 6 million sentence pairs
340 million words

Examples



Application Training 
Data Size ~ Methodology

Hurricane intensity (wind speed) estimation 97,000+ Combining imagery with 
storm database

Severe storm (hailstorm) detection 93,000+ Storm reports

Transverse bands detection 9,000+ Manual

Dust climatology 8,000+ Manual

Ephemeral water detection 650,000+ Combining shapefiles and 
time series analysis

Labeled training data



Existing strategies to increase training size

• Data Augmentation

• Transfer Learning

• Permutation Invariance

• Data Programming



• For computer vision tasks
• Mirroring
• Random cropping
• Color shifting
• PCA

Data augmentation



• Network gains knowledge from training data
• Compiled as “weights” of the network 
• Weights can be extracted and then transferred to another network 
• Instead of training network from scratch, “transfer” the learned 

features
• Pre-trained model

• Created by someone else to solve similar problem
• Ways to fine tune the model

• Feature extraction
• Architecture
• Train some – freeze some

Transfer Learning



Using pre-trained models



•Programmatic creation of training dataset
•User

• Provides unlabeled data
• Writes labeling functions (LFs)

• expresses supervision strategies (domain heuristics)
• Chooses a discriminative model

Data programming



•Distant supervision
•Crowdsourcing
•Weak classifiers
•Domain rules/heuristics

Weak supervision



• Information Extraction from Earth Science Literature
• Unstructured text
• Extract information: dataset usage, hypothesis validation, etc.
• No large labeled training dataset
• Various ontologies, vocabularies, and glossaries?
• Custom heuristics?
• Regular expressions
• Rule-of-thumb
• Negative label generation

Example



Studying dust events
Sample text:
“Pronounced changes in the aerosol optical parameters, derived from 
AERONET, have been observed during dust storms.”

• labelingFunction1: Leverage existing Earth Science knowledgebase (e.g., SWEET)
• labelingFunction2: Domain heuristics

Sample Labeling Functions to extract mentions of dust events and properties



• Data programming framework
• Creates a noisy training set – by applying LFs to the 

data
• Learns a model of the noise (learns accuracy of LFs)
• Trains a noise-aware discriminative model

Snorkel



• Model noise in training set creation process
• Use low-quality sources to train high-quality models
• Traditional “distant supervision” rule: external 

knowledgebase
• Learn accuracy and correlations for a handful of rules

Process of training data creation



Our Approach: creating labeled datasets
• Existing strategies

• External database

• Unstructured data

• Expert labeling

• Labeling tool

• Citizen science 

• Validation data

Application Training 
Data Size ~ Methodology

Hurricane intensity (wind speed) 
estimation 49,000 Combining imagery 

with storm database
Severe storm (hailstorm) 
detection 93,000 Storm reports

Transverse bands detection 9,000 Manual

Dust climatology 8,000 Manual

Ephemeral water detection 650,000
Combining shapefiles 

and time series
analysis



Use case – Creating Training Dataset

Detect hail in NASA GPM GMI measurement
• Hail not only results in damages but also contaminates passive 

microwave-based rainfall retrievals, which are the primary 
means for global precipitation measurement

• Current methods for hail detection use radar or rely on single 
passive microwave (PMW) frequencies (e.g., 37 GHz)
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Approach

• Use GPM GV data (GHRC) to provide large 

dataset of ground “truth” 

• Constrain GMI-GR matchups to where GR 

indicates hail

• Combine GMI channels into a common 

coordinate system

• Create plots to train a CNN
GPM GV consists of geometrically matched GMI (rectangle) and Ground Radar (GR) measurements 
(waffles) like that illustrated here. The GMI views the ground along a slanted path and provides a 2-D 
measurement of precipitation. The GR views the atmosphere along cones and provides a 3-D measurement 
of precipitation. The information contained at the intersection of the GR cones with the GMI slant path 
provides a bulk characterization of precipitation within affecting the GMI measurement and subsequent 
precipitation retrievals. 



Generating GMI image



Application Training Data 
Size ~ Methodology Strategy

Hurricane intensity (wind 
speed) estimation 97,000+ Combining imagery with 

storm database Data Augmentation

Severe storm (hailstorm) 
detection 163,000 Storm reports None

Transverse bands detection 9,000 Manual Data Augmentation and 
Transfer Learning

Dust climatology 8,000 Manual
Data Augmentation and 

Transfer Learning

Ephemeral water detection 650,000 Combining shapefiles 
and timeseries analysis None

Labeled training data



• Should Earth science training dataset be published as other 
datasets?

• Catalog – NASA CMR?

Publishing dataset



• Research
• Acceptable accuracy
• Nice charts > publish paper

• In production:
• Load your model with its weights
• Preprocess your data
• Perform the actual prediction
• Handle the prediction response data

• Issues:
• Does the model confidence remain the same over time?
• How do you maintain?
• Complete the loop with new training data

Deploying Model in Production



• Performance requirements
• Metrics and baselines with initial model
• Monitor over time

• Back-testing
• Model, Data and Software will change
• Automate the evaluation of production model

• Back-testing model changes on historical data
• More than hyperparameter tuning
• Needs clear demarcation 
• Run the current operational model to baseline performance
• Run new models, competing for a place to enter operations
• Run periodically and generate automatic reports

• Now-testing
• Test of production model on latest data
• Idea is to get early warning that the model may be faltering

• Content drift
• Training data exploited by your model are subtly changing with time

Deploying Model in Production



• Deep learning ideal for “Supervised” learning
• Algorithms can be fine tuned for customized applications
• Large labeled datasets fuel impressive classification 

accuracy
• Challenge: 

• Creating/Identifying/Accumulating large labeled datasets

Key takeaways



Manil Maskey
manil.maskey@nasa.gov

Thank you.
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