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Abstract 

Satellite passive ocean color instruments have provided an unbroken ~20-year record of global 

ocean plankton properties, but this measurement approach has inherent limitations in terms of 

spatial-temporal sampling and ability to resolve vertical structure within the water column.  These 

limitations can be addressed by coupling ocean color data with measurements from a spaceborne 

lidar.  Airborne lidars have been used for decades to study ocean subsurface properties, but recent 

breakthroughs have now demonstrated that plankton properties can be measured with a satellite 

lidar.  The satellite lidar era in oceanography has arrived.  Here we present a review of the lidar 

technique, its applications in marine systems, a prospective on what can be accomplished in the 

near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multi-

platform ‘virtual constellation’ of observational assets enabling a 3-dimensional reconstruction of 

global ocean ecosystems. 
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1. INTRODUCTION 

Marine ecosystems are complex entities encompassing vast numbers of species functioning 

over a wide range of spatial and temporal scales.  Phytoplankton constitute the base of most marine 

ecosystems and their annual net photosynthetic carbon fixation is roughly equivalent to that of all 

terrestrial plants (Field et al. 1998; Behrenfeld et al. 2001). This production at the base of the 

aquatic food chain drives CO2 exchange between the atmosphere and ocean and fuels carbon 

sequestration to the deep sea (Falkowski et al. 1998; DeVries et al. 2012). Accordingly, plankton 

productivity plays a vital role in Earth’s coupled ocean-atmosphere system. Furthermore, and in 

stark contrast to terrestrial vegetation, the entire global ocean phytoplankton stock is consumed 

and regrown every week (Antoine et al. 1996; Behrenfeld & Falkowski 1997). This rapid turnover 

underpins ocean food webs and, hence, fish stocks and global food supply.  In addition, and 

through an array of trophic interactions and metabolisms, some of the organic carbon products 

initially produced by phytoplankton become converted into volatilized molecules that leave the 

surface ocean and function as important atmospheric aerosols that influence clouds and the Earth’s 

radiative budget (Falkowski et al. 1992; Gantt & Meskhidze 2013; Meskhidze & Nenes 2006). 

Our understanding of links between biodiversity, ecosystem structure, and ecological and 

biogeochemical function is incomplete, as is our grasp of how these linkages and processes vary 

over space and time.  With our current observational and modeling tools, we have only begun to 

constrain the flow and cycling of elements within and between ecosystems or the impact of climate 

and other physical and chemical environmental changes on ecological systems.  However, from 

this work, clear paths have emerged for accelerating our understanding.  Global satellite ocean 

observations are fundamental to these future scientific breakthroughs. 

Many scientific advances have been made using satellite passive ocean color data (McClain 

2009), but there are fundamental geophysical properties that simply cannot be characterized with 
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this technology alone (Section 2).  The historical single-sensor (i.e., ocean color) approach for 

global ocean biology and biogeochemistry research contrasts sharply with the multi-instrument 

strategies used for atmospheric research.  The A-Train constellation (ref A-Train) ushered in a new 

era of remote sensing wherein synergies between data sets acquired by multiple instruments were 

routinely exploited to advance science.  This includes the application of data sets from different 

types of sensors to draw conclusions on various processes, the use of data from one or more sensors 

to assess and improve algorithms for another sensor, and the use of data from two or more sensors 

in joint algorithms to provide new or improved data products.  For instance, the CCCM radiative 

flux data product (Kato et al. 2011) combines active and passive measurements from four 

instruments1 on three satellites to provide the vertical distribution of cloud and aerosol properties 

and profiles of radiative flux to much greater accuracy than possible using any one sensor alone.   

Following such examples, two instruments are being considered for the Plankton Aerosol Cloud 

and marine Ecosystem (PACE) mission, a hyperspectral ocean color sensor and a co-deployed 

polarimeter.  Here, the polarimeter complements the ocean color sensor by enabling more accurate 

atmospheric corrections, as well as potential ocean retrievals of particle type (Loisel et al. 2008).  

While this two-instrument PACE complement offers significant advantages, even greater 

synergies can be achieved by the combination of passive ocean color with an ocean-optimized 

profiling lidar.  

In this paper, we briefly review strengths and limitations of passive ocean color measurements 

(Section 2), present ocean lidar fundamentals (Section 3), describe airborne lidar measurements of 

ocean properties (Section 4), overview the current state of spaceborne lidar ocean remote sensing 

                                                           
1 CCCM stands for CERES CALIPSO Cloudsat MODIS.  The CCCM algorithms employ data from the CERES broadband 
radiometer and MODIS spectroradiometer on the Aqua satellite, the CALIOP lidar on the CALIPSO satellite (see 
Sections 3 and 5), the Cloud Profiling Radar on the CloudSat satellite.  
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(Section 5), introduce an ocean-optimized lidar concept achievable in the near term with 

interdisciplinary science applications (Sections 6 & 7), and introduce a multi-platform vision of  

synergistic space and field observations for global biogeochemical and ecosystem research 

(Section 8).    

2. PASSIVE OCEAN COLOR: ADVANCES AND CHALLENGES 

 

In the modern era of Earth System science, the availability of global satellite-based 

observations is all too easily taken for granted.  Yet, for the oceanographic community, such data 

are still a relatively new development, with the continuous global data record extending back less 

than 20 years.  The Sea-viewing Wide Field of View Sensor (SeaWiFS) was the first ocean color 

sensor to provide multi-year, fully global ocean color data.  The SeaWiFS design was built upon 

the proof-of-concept Coastal Zone Color Scanner (CZCS) and provided measurements at 8 

spectral bands originally targeting a modest set of ocean geophysical properties (e.g., chlorophyll 

concentration).  Subsequent missions (e.g., MODIS, MERIS, VIIRS) largely continued these 

heritage measurements, with some expansion (e.g., chlorophyll fluorescence bands on MODIS and 

MERIS) and improved spatial resolution and signal-to-noise. The science community, on the other 

hand, has greatly expanded the suite of retrieved ocean properties beyond the original targets.  

Today, passive ocean color data are used to quantify surface layer chlorophyll concentrations, 

total particulate carbon stocks, and net primary production (McClain 2009).  The development and 

application of spectral inversion algorithms (Garver & Siegel 1997; Maritorena et al. 2002; Lee et 

al. 2002; Werdell et al. 2013) to ocean color data has further provided assessments of absorption 

by colored dissolved organic matter, phytoplankton absorption coefficients, total particulate 

backscatter coefficients (Lee et al. 2002; Maritorena et al. 2002, Siegel et al. 2002, 2005; Werdell 

et al. 2013), and estimates of phytoplankton carbon biomass and division rates (Behrenfeld et al. 
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2005; Westberry et al. 2008; Silsbe et al. 2016).  The combination of fluorescence line height data 

and phytoplankton pigment and carbon data has yielded insights on iron stress and 

photophysiology (Behrenfeld et al. 2009; Westberry et al. 2013; Lin et al. 2016).  Additional 

algorithm development has led to new retrievals regarding plankton community composition, 

including phytoplankton size fractions, slope of the particle size distribution, and even specific 

phytoplankton groups, such as coccolithophores, Trichodesimum, and harmful algal species (e.g., 

Alvain et al. 2005; Bracher et al. 2009; Sadeghi et al. 2012; Kostadinov et al 2010; IOCCG 2014 

and references therein).  Furthermore, the sustained time series of these diverse ocean properties 

has provided major advances in our understanding of plankton annual cycles and responses to 

climate variations and has been instrumental for informing and testing ocean ecosystem models.  

Quite simply, the satellite ocean color record has fostered a major revolution in oceanography, one 

we can hope will continue with upcoming advanced sensors such as the hyperspectral instrument 

planned for the PACE mission.    

Despite the major advances enabled through ocean color observations, the passive radiometric 

technique has several fundamental limitations.  Specifically, (1) the top-of-atmosphere signal 

measured by the sensors includes contributions from sources other than the target ocean properties, 

(2) the ocean color signal provides no information on the vertical distribution of ocean constituents, 

(3) measured ocean color is an optically integrated property without a direct signal for separating 

the absorption and scattering fractions, and (4) global sampling is compromised by atmospheric 

interferences and solar angle. 

With respect to the first limitation, there can be large uncertainties in retrieved parameters due 

to uncertainty in corrections for scattering and absorption from sources other than water molecules 

and particles suspended in seawater.  The radiances measured by ocean color instruments are 
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composed of several terms: scattered sunlight from ocean subsurface particles and water 

molecules, subsurface bubbles, surface foam, the surface interface itself, and atmospheric 

constituents, including aerosols, clouds, and air molecules.  Easily 90% of the top-of-atmosphere 

measured signal can be due to scattering from the atmosphere.  A small error in the estimation and 

removal of this atmospheric contribution creates a large relative error in the estimated water 

leaving radiances and associated geophysical retrievals.  Similarly, unaccounted for contributions 

from bubbles, foam, and surface reflection degrade retrieval fidelity.  Under particularly 

challenging conditions (e.g., sunglint, significant aerosol loads, nearby clouds), attempts to retrieve 

ocean properties are abandoned all together.   

With respect to the second ocean color limitation, the ocean color signal is heavily weighted 

toward the surface.  This results from the exponential decay of sunlight with depth due to 

absorption from water, particles, and dissolved matter.  Similarly, the up-scattered photons suffer 

the same exponential decay on their path to the ocean surface.  The result is that over 92% of the 

ocean color signal emanates from the first optical depth (10 m geometric depth if the diffuse 

attenuation coefficient = 0.1 m-1) and 71% the first half of the first optical depth (5 m for the same 

case).  This limitation of ocean color can result in significant errors in important water-column-

integrated ocean properties, such as chlorophyll concentration (Stramska & Stramski 2005; 

Sathyendranath & Platt 1989) or net primary production (NPP) (Platt & Sathyendranath 1988, 

Churnside 2015; Jacox et al. 2015).    

With respect to the third ocean color limitation, the strength and spectral characteristics of 

retrieved water leaving radiances represent the integrated signature of multiple factors.  Dominant 

contributors to the signal include absorption by colored dissolved matter (acdm), phytoplankton 

pigments (aph), and non-algal particles (anap), plus backscattering by suspended particles (bbp) 
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(note, the absorption and scattering by saltwater is a known function of salinity).   Retrievals of 

these four fundamental properties and other geophysical parameters derived from them have an 

inherent uncertainty that cannot be reduced without additional information.  This issue is a driving 

motivation for the PACE mission’s expanded measurement spectral range and resolution 

compared to heritage ocean color missions.  Coupling such passive ocean color measurements with 

active satellite instruments can likewise reduce uncertainties in derived ocean properties. 

Finally, with respect to the fourth limitation, ocean color global sampling is significantly 

limited by atmospheric interferences and sun angle.    On average, greater than 70% of the Earth’s 

ocean area is under sufficient cloud cover to make passive ocean retrievals impossible.  Broken 

cloud scenes are a significant fraction of the remaining ocean area and, under these conditions, 

side-scatter from nearby clouds can compromise accurate ocean retrievals from otherwise clear 

sky pixels.   Beyond issues of cloudiness, ocean color retrievals must be abandoned when strongly 

scattering aerosol layers are present.  Some of these aerosol interferences can compromise ocean 

color monitoring for extended periods.  Examples of such conditions include pollution outflow 

from populated regions (e.g., Eastern Seaboard of the US, India, China), systematic dust events 

(e.g., Saharan dust outflow at low northern latitudes in the Atlantic, Gobi dust outflow at mid 

latitudes in the Northern Pacific), and long-range and broadly distributed smoke transport (e.g., 

from boreal forest fires in North America and Siberia, agricultural fires from all continents).   In 

polar regions, low sun angles, by themselves and exacerbated by cloud conditions (i.e., cloud 

shadowing of otherwise clear pixels), can eliminate ocean color sampling from late fall through 

early spring.  Notably, these high latitude regions include some of the most productive waters in 

the global oceans and the lack of sampling for a significant fraction of the year can undermine any 

complete understanding of plankton annual cycles and biogeochemistry (Behrenfeld et al. 2017).   
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The intent of this section is not to criticize the passive ocean color approach, but rather to 

recognize both its benefits and inherent weaknesses and thereby highlight where additional 

technologies may contribute to improved understanding of global ocean ecosystems.  Passive 

ocean color radiometry has enabled huge scientific advances and will remain a cornerstone of 

future ocean research.  With increases in spectral coverage and resolution from missions like 

PACE and work toward increasing the number and coverage of geostationary sensors, such as 

Geostationary Ocean Color Imager (GOCI) (Ryu et al. 2012; O’Malley et al. 2014), the ocean 

color portfolio is set to expand significantly. With these new ocean color capabilities on the 

horizon, it is time to consider complementary remote sensing techniques that will enable additional 

breakthrough science on issues beyond the reach of passive radiometry.  Lidar is just such a 

technique that, when flown in formation with a capable ocean color sensor, can revolutionize 

satellite ocean remote sensing.    

3. LIDAR 101 

Airborne lidars have been used for decades to study the atmosphere and the oceans.  However, 

a longstanding question has been whether lidars can achieve the sensitivity required to provide 

useful ocean products from space.  That question was answered decisively with data from the 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument that has operated in 

space since 2006 on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) platform (Winker et al. 2009).  While CALIOP was designed solely for atmospheric 

measurements and has severe drawbacks as an ocean lidar, Yongxiang Hu developed an innovative 

technique for retrieving ocean subsurface particulate backscatter from CALIOP data (Hu 2009).  

But before telling the story of ocean science breakthroughs made with CALIOP, we here provide 

some background explanation of the lidar technique. 
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Lidar is an acronym for light detection and ranging.  Similar to radar, a lidar employs a time-

of-flight technique to provide range-resolved (i.e., for the current discussion, ‘vertically-resolved’) 

measurements of optical properties. Unlike the ocean color technique’s reliance on the sun as a 

source of light (thus, ‘passive’ remote sensing), a lidar uses lasers to generate its own photons that 

are ultimately scattered back to the instrument’s receiver (thus, ‘active’ remote sensing).  Figure 

1 provides a simple illustration of the lidar approach, where the geometry depicted is a nadir or 

near-nadir viewing configuration.  In this figure, laser pulses are directed downward and a small 

fraction of the backscattered light is collected in a telescope receiver.  In the atmosphere, this 

backscattered light originates from air molecules and suspended particles, such as cloud droplets 

or aerosol particles.  Similarly, the laser pulse is backscattered in the ocean by water molecules 

and suspended particles, such as phytoplankton.  These signals are received by the telescope and 

imaged onto a high-speed optical detector.  This detector generates a time-varying electrical signal 

that is proportional to the instantaneous optical power incident on the detector, and this electrical 

signal is recorded at a high sampling rate (e.g., 107 to 108 samples/s).    The point of origin of the 

signal (in other words its vertical position in the atmosphere or ocean) is determined using the 

speed of light.  Specifically, each sample is assigned a distance from the lidar based on the time 

difference between the firing of the laser and the detection of the backscattered signal.  By 

sequentially recording all of the samples following a laser pulse into a data array, a vertically-

resolved profile is created, with each sample reflecting the magnitude of scattering at a known 

altitude in the atmosphere or depth into the ocean (Figure 1d). Importantly, the vertical resolution 

of a lidar profile is determined by the rate of sampling by its detector.  For example, a rate of 107 

samples/s corresponds to the 15 m vertical resolution commonly used for atmospheric 
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measurements, whereas a rate of 108 samples/s would correspond to a ~1 m vertical resolution that 

is more appropriate for ocean profiling.  

For the scenario described above, a vertical profile of the atmosphere and ocean is acquired 

for every laser pulse.  Combining data from multiple laser pulses thus creates a time series of 

profiles.  When a lidar is mounted on a moving platform, such as an aircraft or satellite, this time 

series maps to a horizontally and vertically resolved data ‘curtain’ registered to the flight track (an 

example is shown in Section 4).  One advantage of active lidar remote sensing is that it creates 

these ‘curtains’ of data during both day and night, thus providing opportunities to study diel 

changes in plankton properties and to continue observations during periods of polar night. During 

daylight hours, the contribution to the received signal from diffusely scattered sunlight is estimated 

from data acquired between laser pulses and subtracted from the measured profiles.   

Producing useful geophysical data products from the measured lidar signals requires 

application of appropriate calibration factors and post-processing algorithms.  Perhaps more 

importantly, the suite of products that can be produced and their accuracy depend on instrument 

design (e.g., the number and character of the receiver channels).  Our illustration and discussion 

to this point has centered on the ‘elastic backscatter lidar’ technique, which relies on backscatter 

from air molecules and particles at the same wavelength as the transmitted laser pulse.  Many 

atmosphere-ocean lidars employ alternate techniques involving additional optical processing in 

the receiver downstream of the telescope to expand retrieval capabilities.  An important example 

of this is the separation of polarization and spectral components of the received signal onto 

different detectors.  By doing so, simultaneous profiles sensitive to different physical properties 

are measured on each detector, thereby increasing information content in the measurements and 

expanding the number and accuracy of retrieved products.  Lidars capable of generating an array 
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of geophysical data products have been demonstrated for decades from stationary platforms, ships, 

and aircraft.  Scientific progress made with airborne lidars motivates some of our thinking about a 

future ocean-optimized satellite lidar and we focus on three airborne applications in the next 

section.   

 

4. ESSAYS FROM THE FIELD 
 

The first scientifically meaningful oceanographic applications of airborne lidar involved the 

use of fluorescence techniques, starting with chlorophyll (Kim et al. 1973) and later colored 

dissolved organic matter (CDOM) (Hoge et al. 1995).  Fluorescence involves absorption of a 

photon of light by a constituent molecule and subsequent emission of a photon as that molecule 

relaxes back to a lower energy state.  Chlorophyll readily absorbs the common 532 nm laser 

wavelength employed in many lidars and emits fluorescence in the 670-690 nm region. Detecting 

the signal alone does not provide a useful measurement, however.  One must correct the magnitude 

of signal for factors that are unrelated to chlorophyll concentration, such as variations in laser 

energy, atmospheric attenuation, and water attenuation.  These corrections were made by dividing 

the measured fluorescence by Raman-shifted backscatter from water molecules2 measured at a 

different wavelength (Bristow et al. 1981) under the assumption that the aforementioned factors 

unrelated to chlorophyll cancel in the ratio (Poole & Esais 1982).  The result is a relative, rather 

than absolute, measure of chlorophyll fluorescence. The ocean lidar research group at NASA 

Wallops Flight Facility made the most significant scientific contributions in this field with their 

Airborne Oceanographic Lidar (AOL) (Hoge et al. 1981). That lidar employed a grating 

spectrometer in the receiver to isolate the chlorophyll fluorescence and Raman-shifted water 

                                                           
2 The O-H vibrational stretching mode of the water molecule causes a frequency shift for a fraction of the scattered 
photons by 3418 cm-1.  For 532 nm laser excitation, the Raman-shifted water backscatter is at 645 nm.      
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backscatter.  This water-Raman-normalized chlorophyll fluorescence signal was used in many 

studies.  For instance, Yoder et al. (1993) used chlorophyll fluorescence signals acquired with the 

AOL during flights on a long-range P3-B aircraft to study spatial scales of the North Atlantic 

bloom.  From these measurements, they concluded that the pixel resolution of CZCS, SeaWiFS, 

and MODIS ocean color data captured the dominant scales of variability in the bloom and that 

mesoscale variability must be taken into account in the interpretation of ship-based measurements 

to avoid confusing changes due to advection with those due to local ecosystem processes.  Martin 

et al. (1994) used data from AOL during the IronEx in situ enrichment experiment to test the 

hypothesis that iron is a limiting factor for phytoplankton productivity in the equatorial Pacific.  

AOL fluorescence data were further used by Hoge et al. (2003) to validate MODIS ocean color 

fluorescence line height products.  Hoge et al. (2005) subsequently used both AOL chlorophyll 

and CDOM fluorescence measurements to quantify chlorophyll biomass, using a modification of 

an ocean color algorithm and matchup data with ship-based in situ measurements to appropriately 

scale their fluorescence-to-Raman ratios.  

Due to weak signal levels, fluorescence retrievals typically involved vertically integrating the 

received backscatter to provide a column-wise value rather than a series of profiles along the flight 

track. True profiling measurements were first made possible with the application of the elastic 

backscatter lidar technique described in Section 3. Airborne implementations of this technique 

were demonstrated in the late 1900s by groups from around the world, including those from 

Australia (Billard et al. 1986), the US (e.g., Hoge et al. 1988; Smart & Kwon 1996), and Russia 

(Bunkin & Surovegin 1992).  A major challenge to this technique is ambiguity in the interpretation 

of the measured signal.  The variation of the measured signal with depth depends on several known 

parameters (e.g., range and molecular density) and two unknowns: the coefficients of particulate 
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backscatter and attenuation.  Retrieving one of the unknowns requires assumptions on the behavior 

of the other, and such assumptions are uncertain and not universally valid.  Another fundamental 

problem is that the measurement is difficult to calibrate.  Because of these two issues, early results 

were typically confined to relative, rather than absolute, estimates of particulate backscatter and 

approximate estimates of the attenuation coefficient.  Information content of the measurements 

were improved by adding polarization sensitivity. This involves transmitting a linearly polarized 

beam and separating the received backscatter into polarization components parallel and 

perpendicular to that beam (Churnside 2015).  Even with this capability, the separation of 

backscatter and attenuation remains problematic and requires various assumptions and 

approximations.   

Scientific application of elastic backscatter lidar began to flourish only in the last decade, 

largely reflecting the extensive deployments of the National Oceanic and Atmospheric 

Administration (NOAA) Fish Lidar (Churnside et al. 2001).  This lidar was originally designed by 

James Churnside and colleagues for the detection and quantification of fish schools (Churnside et 

al. 1991; 2001; 2003), but they later turned their attention to application of the technique to 

retrieving ocean inherent optical properties.  James Churnside’s excellent review article 

(Churnside 2013) provides a detailed technical description of the elastic backscatter technique and 

an overview of the contributions made by his group and others on the modeling and interpretation 

of backscatter signals.  Early scientific contributions with the NOAA lidar included several studies 

of subsurface plankton layers (e.g., Churnside & Ostrovsky 2005; Churnside & Donaghay 2009). 

More recently, the focus has been on overcoming the ambiguity in the elastic backscatter retrieval 

through bio-optical modeling. Churnside et al. (2014) employed a parameterization based on 

chlorophyll concentration to estimate the ratio of attenuation to backscatter, thereby reducing the 
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retrieval to solving for a single unknown, as is done for atmospheric aerosol retrievals (Fernald 

1984).  Churnside (2015) extended this bio-optical approach with an iterative scheme that enabled 

the retrieval of chlorophyll concentration in addition to particulate backscatter and diffuse 

attenuation. Churnside & Marchbanks (2015) applied the bio-optical retrieval to measurements of 

subsurface plankton layers in the Arctic, and Churnside (2016) employed it and radiometric 

measurements to estimate the vertical distribution of primary productivity.  

The application of bio-optical modeling has transformed the elastic backscatter lidar technique 

from that of layer detection to a means of quantifying ocean properties.  However, the impact of 

errors in the chlorophyll parameterization has yet to be assessed.  The two parameterized 

unknowns, particulate backscatter and diffuse attenuation, can vary independently (e.g., with 

CDOM concentration) (Siegel et al. 2005).  This affects attenuation but not backscatter and 

violates the retrieval assumptions. Unfortunately, retrieval errors accumulate as the retrieval 

proceeds downward through the profile, since the error at a particular depth interval is a function 

of the retrieval error at that depth interval and the accumulated error from intervals higher in the 

column.   Also, the fundamental problem of absolute calibration of the signal still remains.  

Without calibration, the retrievals of particulate scattering are not possible.  For the typical 300 m 

flight altitude of the NOAA lidar, the measured signals can be calibrated using preflight 

measurements and occasional ocean targets where scattering properties are uniform with depth. 

However, for the spaceborne application, the calibration of the ocean signal will vary significantly 

and rapidly with the optical depth of the overlying atmosphere (i.e., attenuation of the signal due 

to aerosol layers and tenuous clouds). 

 A significant leap in retrieval accuracy and information content has recently been made by 

applying the high spectral resolution lidar (HSRL) technique to ocean profiling.  This technique 
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has been used for decades in ground-based (e.g., Shipley et al. 1997) and airborne (Esselborn et 

al. 2008; Hair et al. 2008) aerosol and cloud measurements.  It is based on the difference in the 

wavelength distributions of backscatter from particles and molecules (Figure 2).  By adding a 

spectral filter (e.g., interferometer) in the receiver optical path and directing particulate and 

molecular water scattering differentially to separate detectors, two signals are acquired that enable 

separating backscatter from pure seawater and suspended particles (e.g., phytoplankton).  This 

separation of water and particulate backscatter is fundamental to the technique as it provides two 

lidar profiles from which to retrieve the two unknowns (i.e., particulate backscatter and diffuse 

attenuation), thus creating a well-posed rather than ill-posed retrieval (Box 1).  Another equally 

important aspect of the HSRL technique concerns calibration. The technique inherently maintains 

calibration through the atmosphere and into the ocean.  Accurate calibration and independent 

measurement of water and particulate backscatter ensures reliably accurate retrievals of the diffuse 

attenuation coefficient and particulate backscatter.   Accurate calibration and optically separating 

the light scattered by water molecules and particles enables reliable retrievals of the both the 

diffuse attenuation coefficient and particulate backscatter. 

The first extensive HSRL retrievals of diffuse attenuation, Kd, and particulate backscatter, bbp, 

were made during the 2014 Ship-Aircraft Bio-Optical Research (SABOR) experiment (Hair et al. 

2016, Schulien et al. 2017) and the 2015 and 2016 North Atlantic Aerosols and Marine Ecosystems 

Study (NAAMES) deployments.  Figure 3 shows atmospheric and ocean retrieval ‘curtains’ from 

a flight of the NASA HSRL-1 instrument during NAAMES.  These data, acquired from a flight 

altitude of 9 km, illustrate the calibration advantage of the HSRL technique.  Similar to a satellite 

viewing geometry, the optical path traveled by the photons to and from the ocean include 

attenuating layers of smoke in the free troposphere and marine aerosol in the boundary layer, 
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producing large variations in the strength of the ocean backscatter signals along the flight track.  

This would create a significant calibration challenge for the elastic backscatter technique, but not 

the HSRL (Hair et al. 2008; 2016).   

The SABOR campaign provided an opportunity to compare HSRL-1 ocean retrieval products 

to independent measurements of the same properties.   For example, Figure 4a shows an along-

track comparison of the HSRL-derived Kd at 10 m depth and MODIS Kd values collected on the 

same day, with excellent agreement between products. The HSRL-1 ocean products also showed 

excellent agreement with optical properties measured at sea during SABOR.  For example, Figure 

4 c and d shows comparisons of depth-resolved bbp values from HSRL-1 with near-coincident in 

situ data from optical profiling casts at the SABOR ship stations (Schulien et al. 2017).  These 

comparisons with MODIS and in situ data have correlation coefficients ≥ 0.94 and slopes of ~1.0, 

giving high confidence in the HSRL technique.  

Schulien et al. (2017) used in situ and HSRL-1 data from SABOR to quantify the value of 

vertically resolved measurements of bbp and Kd for improving estimates of net primary production 

(NPP) relative to estimates based solely on the surface properties retrievable from passive ocean 

color data.  Data from 17 SABOR sampling stations with lidar overflights indicated ‘ocean color 

type’ surface properties yielded estimates of water column integrated NPP that consistently 

underestimated values calculated with vertically-resolved data, with errors up to 54%.  It should 

be further noted that vertical plankton structure during SABOR was modest at best and previous 

estimates of NPP errors associated with a wider range in vertical structure indicate that such errors 

can exceed 100% (Hill & Zimmerman 2010; Churnside 2015).  Clearly, information on plankton 

vertical structure can significantly improve understanding of ocean plankton stocks, productivity, 

and carbon cycling. 
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As a final note for this section, we have largely focused the above discussion on lidar 

applications for retrieving surface and vertically-resolved ocean optical and plankton properties.  

Information on plankton vertical structure might further provide insight on physical mixing 

processes (Zawada et al. 2005). Specifically, the expectation is that particle concentrations in the 

active turbulent mixing layer will be homogeneous with depth.  Accordingly, detection of 

subsurface scattering layers can be used to delineate the maximum depth of active mixing.  This 

constraint on active mixing can be used as a global data set for testing physical mixing models and 

has the potential to significantly improve understanding on dynamic relationships between 

physics, plankton biomass, and bloom trajectories.  However, there has also been a long interest 

in applying lidar technology to directly measure vertical profiles of ocean temperature and salinity 

(see, for instance, Hirschberg et al. 1984; Hickman et al. 1991; Fry et al. 1997; Popescu et al. 2004; 

Rudolf & Walther 2014; Liu et al. 2015).  While much has been accomplished in terms of 

theoretical studies, development of instrument concepts, laboratory demonstrations, and sensitivity 

analyses, to our knowledge a practical lidar for measuring temperature or salinity has yet to be 

developed and deployed in the field from ship or aircraft.  We therefore deemed these techniques 

as not yet mature enough for inclusion in our near-term vision for a spaceborne ocean lidar 

(Sections 6 & 7).  

5. DAWN OF SATELLITE LIDAR IN OCEANOGRAPHY 
 

 The Coastal Zone Color Scanner (CZCS) was certainly not the best satellite sensor ever 

built to globally sample surface ocean properties, but it was the first.   The idea of deriving plankton 

properties from remotely-detectable optical signals significantly pre-dates the CZCS and the 

concept had been demonstrated from aircraft.  But, eventually the time comes to ‘bite the bullet’ 

and launch a proof-of-concept instrument into space.  The launch of CZCS was that proof-of-
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concept for ocean color and a landmark event.  The dawn of the satellite lidar era in oceanography 

shares some parallels with this CZCS story in that the lidar approach was initially demonstrated 

with airborne sensors (in fact to a far greater degree for lidar than CZCS) and the first satellite 

demonstration was based on an instrument with limited capabilities.  Unlike the CZCS story, 

however, the satellite lidar instrument was designed with no intention of retrieving properties of 

the ocean.  That lidar was CALIOP. 

 As discussed above, CALIOP is a simple elastic backscatter lidar with emissions at 532 

and 1064 nm, but in-water attenuation of the latter band is too great to provide any useful 

information on subsurface ocean properties.  Since it was designed for atmospheric science 

applications, the 22.5 m vertical resolution of CALIOP measurements is very coarse for ocean 

applications, and the backscatter from the ocean surface created an artifact in the co-polarized 

subsurface data.  Also, CALIOP simply lacks the advanced capabilities of an HSRL system, so it 

does not provide direct information required for independently separating the attenuation and 

backscattering components from the retrieved subsurface signal.  However, what CALIOP does 

provide is a space-based measurement of an ocean signal at 532 nm from its cross-polarization 

channel.  In addition, this ocean signal is measured at a constant viewing angle, has minimal 

atmospheric correction errors, is independent of solar angle, and is retrieved both day and night 

and through significant cloud and aerosol layers.  The CALIOP orbit also has a 16-day repeat cycle 

that provides a globally representative sampling of ocean ecosystems (Figure 5a).  Thus, while 

CALIOP was not the optimal lidar system for observing the ocean, it has not only yielded the first 

space-based proof-of-concept but significant scientific results as well.  

The first challenge in using CALIOP data for oceanographic research was isolating the 

subsurface signal in a calibrated and quantitative manner.  This was accomplished by employing 
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the ratio of cross-polarized to co-polarized signal returns (the “depolarization ratio”), which is very 

well calibrated through the atmosphere and ocean column due to the fact that both channels 

respond similarly to absorption and scattering losses. The algorithm employed the sum of the 

depolarization ratio from the first few bins below the ocean surface, an estimate of the backscatter 

from the ocean surface itself, Kd values from MODIS, and assumptions based on empirical data to 

generate a surface-weighted column estimate of bbp (see Behrenfeld et al. 2013, Supplemental 

Materials for details).   

 The second challenge in using CALIOP data was to validate the ocean products.  An ideal 

opportunity for this arose from a NASA funded airborne field campaign based in the Azores that 

was coupled to ship-based optical measurements being conducted as part of a UK Atlantic 

Meridional Transect cruise (Behrenfeld et al. 2013).  The validation component of the lidar study 

was focused on ship, aircraft, MODIS Aqua, and CALIOP measurements bbp.  For the overall ship 

transect data, the study found a significantly better agreement between in situ bbp and CALIOP 

retrievals (r2 = 0.54) than for the MODIS ocean color retrievals (r2 = 0.13 and 0.27 for different 

inversion algorithms).  For the three aircraft flights of the campaign, CALIOP retrievals were well 

aligned with airborne HSRL-1 based bbp data (r2 = 0.58).  Overall, these results were viewed as 

highly encouraging, given that the ship, aircraft, and satellite data diverged significantly in spatial 

resolution and were not temporally coincident. 

 Given the success of the field validation analysis, Behrenfeld et al (2013) then provided 

the first published global map of surface bbp from a space based lidar and associated estimates of 

phytoplankton carbon biomass (Cphyto) and total particulate organic carbon (POC).  These data 

were compared to MODIS-based bbp values from the Garver-Siegel-Maritorena (GSM) inversion 

algorithm (Garver & Siegel 1997; Maritorena et al. 2002; Siegel et al. 2002) and the Quasi-
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Analytical Algorithm (QAA) (Lee et al. 2002) and associated Cphyto (Figure 5b) and POC values.  

The CALIOP-based products exhibited similar global distributions and seasonal cycles as the 

MODIS based products, but also highlighted some inconsistencies.  For example, the CALIOP 

global POC data showed a dual-mode frequency distribution similar to QAA, but with peaks at 

lower POC concentrations, and a low-POC peak (~45mg C m3) that was consistent (but of smaller 

magnitude) with the peak in GSM data (see Figure S4 in Behrenfeld et al. 2013).  One intent of 

these comparisons was to highlight how independent, active-sensor based retrievals of 

fundamental ocean properties may provide critical constraints for improving passive ocean color 

algorithms.  An additional study attempted to retrieve vertically-resolved information in the ocean, 

but quantification of the profile data in terms of ecosystem parameter was not possible (Churnside 

et al. 2013).   

 The Behrenfeld et al. (2013) study focused on the utility of satellite lidar measurements for 

global ocean studies, but lidar measurements may be even more important for specific regions and 

science questions.  One such example is an improved understanding of high latitude ecosystems.  

As noted above, high latitude regions present particularly challenging conditions for passive ocean 

color sensors.  They tend to be plagued by persistent cloud cover, solar geometries change 

significantly during the year, and periods of polar night prevent any passive measurements at all 

over broad areas.  Because of these challenges, incomplete ocean color records at high latitudes 

can completely miss critical events in plankton annual cycles.  Here again, CALIOP has provided 

the first demonstration of how active lidar measurements from space can complement passive 

ocean color data to yield new scientific insights.  

 Over polar regions, convergence of the CALIOP orbit tracks provides its most dense spatial 

sampling (Figure 5a).  Active sensing is particularly valuable here because the lidar measurements 
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can be made throughout the annual cycle, including polar night, and valid retrievals can be made 

between clouds and through clouds (for cloud optical depths <1).  These advantages have allowed 

CALIOP to provide 1˚ binned spatial coverage comparable to that of MODIS in both the North 

and South Polar regions during late-spring to early-autumn months and better coverage from the 

late-autumn to early-spring period (Figure 5d).  With these data, the recent Behrenfeld et al. (2016) 

study demonstrated that initiation of polar annual phytoplankton blooms generally occurs before 

conditions are suitable for passive ocean color retrievals.  The CALIOP data further provided the 

clearest demonstration to date that annual cycles in polar phytoplankton biomass are driven, at the 

month time scale, by the rate of acceleration and deceleration in phytoplankton division rates.  

Accordingly, the climax of the bloom coincides with division rate maxima, rather than a decrease 

in division.  The study also showed that interannual variability in the amplitude of the 

phytoplankton annual biomass cycle is related to the overall range in division rate between winter 

minima and summer maxima.  Finally, the lidar data were used for a complete annual accounting 

of the relative contributions of ecological processes and ice cover changes to a decade of variations 

in polar phytoplankton biomass.   

 The lidar era in satellite oceanography has arrived. 

6. A NEW LIGHT ON THE HORIZON 

There are 1224 words in the previous section.  Perhaps the three most important of these are 

‘proof-of-concept’.  CALIOP does not represent a blueprint of what a satellite lidar can achieve 

for global ocean studies, but rather provides a tantalizing glimpse of where lidar measurements 

can take us.  Transitioning a new measurement from ground-based observations to an on-orbit 

system has been the demise of many exciting new remote sensing concepts.  The simple fact is 

that satellite missions are expensive, so launching a totally new technology is unnervingly risky 
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compared to iteratively improving an existing approach.  CALIOP has unintentionally provided 

this key step from a field-verified ‘good idea’ to an on-orbit demonstrated capability.  CALIOP is 

for satellite lidar what CZCS was for ocean color.   It has shown us that an ocean signal is detectable 

from a space lidar.  Now, it is time to think about what we can really achieve with a satellite lidar 

when it is actually built for ocean measurements.    

 There are 4 obvious targets for realizing major scientific advances from a space lidar, and 

each of these has airborne heritage: (1) improved vertical resolution of the detected signal, (2) 

expanded set of detection bands, and (3) additional laser emission wavelengths.  Some of the 

science applications of these expanded capabilities are discussed in the following paragraphs. 

 Since the very beginning of the passive ocean color record, it has been recognized that the 

measurement was missing an essential property of the upper water column: the vertical distribution 

of suspended and dissolved constituents.  CALIOP provided little information on vertical structure 

because of its coarse vertical sampling capability (22.5 m).  An ocean-optimized space lidar can 

provide much finer vertical resolution than CALIOP (note that the ICESAT lidar measures ice 

surface topography at centimeter scales), but the trade-space needs to be carefully considered 

between spatial resolution and measurement precision.  From airborne lidar sensors, water column 

vertical structure is clearly resolved at 1-3 meter resolution and a similar scale can be envisioned 

for a future satellite system.  With such capabilities, phytoplankton and total suspended particulate 

distributions within the upper light field could be characterized globally to enable improved 

estimates of NPP and carbon stocks.   

 A counterpart to improved vertical resolution is increased penetration of the retrieved 

signal.  The maximum depth from which valid retrievals can be achieved with a satellite lidar is a 

function of multiple factors, including laser pulse energy and repetition rate, laser emission 
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wavelength, telescope size, horizontal averaging, and the optical clarity of the water column.  As 

a general ‘rule of thumb’, it is anticipated that an ocean-optimized satellite lidar will be able to 

retrieve valid ocean properties to approximately 2.5 to 3.0 optical depths3. Such retrieval depths 

have already been demonstrated with airborne lidar.    Thus, a space lidar can detect plankton 

properties within as much as 65% of the euphotic zone.  Importantly, phytoplankton within this 

upper layer are the dominant contributors to water column integrated primary production and 

vertical distribution within this layer is a significant source of uncertainty in ocean color based 

assessments of production (Platt & Sathyendranath 1988; Hill et al. 2012; Zhai et al. 2012). These 

studies clearly demonstrate the value of vertically-resolved lidar profiles for assessing ocean 

production and standing stocks, however, there are additional subsurface plankton features that are 

simply beyond the reach of lidar.  Perhaps the most widely recognized of these is the deep 

chlorophyll maximum that is ubiquitous in the permanently stratified ocean (roughly the ocean 

region between 40oN and 40oS) and often lies very near the bottom of the photic zone (i.e., > 3.5 

optical depths) (Cullen 1982; 2015).   In many cases, the deep chlorophyll maximum 

predominantly reflects light-driven changes in phytoplankton chlorophyll:carbon (i.e., 

photoacclimation), rather than an increase in cell concentration (Fennel & Boss 2003).  In such 

cases, this common feature can be effectively accounted for by assuming constant phytoplankton 

concentrations between 3.0 and 4.6 optical depths and applying a depth-dependent 

photoacclimation model to reconstruct the vertical structure in chlorophyll (e.g., Westberry et al. 

2008).  In other cases, however, the deep chlorophyll maximum can reflect significant changes in 

phytoplankton biomass.  Routinely characterizing these features on a global scale will require 

                                                           
3 Optical depth is defined by the product of physical depth and attenuation coefficient.  Over one optical depth, for 
example, a radiant flux is reduced by 63%. For reference, the surface photic layer is commonly defined as 4.6 
optical depths. 
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augmenting measurements from an advanced ocean lidar with additional technologies (see Section 

8).      

 With respect to the detection bands, the most important next step in satellite lidar 

measurements will be to depart from the simple elastic scatter approach employed by CALIOP 

and include measurement bands that allow the direct separation of attenuation and backscattering 

coefficients. We have called attention to this issue multiple times in this review but believe it 

cannot be overstated.  In previous analyses using CALIIOP data the separation of bbp and Kd has 

been executed by using coincident ocean color data (Behrenfeld et al. 2013) or a simple empirical 

relationship (Behrenfeld et al. 2016).   Clearly these approaches are less than satisfactory and a 

lidar-specific approach is needed.  As discussed above (Section 4), the HSRL technique addresses 

this issue with additional detectors for distinguishing particulate and molecular backscattering.  

The significance of this advancement for ocean studies is that it will allow the lidar-retrieved 

geophysical properties to be independent of other satellite, field, or modeled data.  One important 

application of such data is that the global sampling provided by a space lidar can provide an 

unprecedented test data set (in terms of temporal and spatial coverage) for improving ocean color 

geophysical retrievals.   Currently, development and validation of ocean color algorithms rely on 

field collected data, which are sparse in time and terribly undersampled in space (Figure 5c).  The 

benefit of the lidar data to ocean color retrievals is reciprocated by the improved spatial coverage 

of ocean color products that can allow extrapolation of lidar-based properties between orbit tracks. 

 Another exciting avenue for advancement is expansion of the detection waveband set to 

include measurements of lidar stimulated fluorescence.  As discussed in Section 4, chlorophyll 

fluorescence measurements have been demonstrated with airborne lidar systems.  A similar space-

based fluorescence measurement could serve multiple scientific applications.  First, the total 
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fluoresced light can be quantitatively related to pigment concentration.  As incident sunlight causes 

significant changes in the quantum yield of fluorescence (a process referred to as non-

photochemical quenching), lidar based assessments of pigment concentration will be most accurate 

for measurements made on the dark side of the Earth.  These chlorophyll assessments, in turn, can 

be used to separate measured Kd values into that associated with phytoplankton pigments and that 

associated with other absorbing compounds.  An important benefit of the lidar fluorescence 

measurements compared to passive fluorescence measurements is that, obviously, the passive 

measurements cannot be collected at night and thus suffer from uncertainties in non-photochemical 

quenching.  In addition, the night-time lidar signal is based on fluorescence excitation of a known 

and fixed energy. 

 The benefit of a lidar chlorophyll fluorescence channel goes beyond simply an estimate of 

pigment concentration.  Because the measurements are conducted both day and night with a fixed 

excitation energy, they permit an accurate quantification of the non-photochemical quenching 

(NPQ) response.  Such data could enable more accurate descriptions of NPQ variability and thus 

be used to improve interpretations of ocean color base fluorescence data (again, the ocean color 

product then reciprocates by enabling spatial extension of lidar data).  Lidar-based NPQ 

assessments could further be evaluated in terms of different types of phytoplankton assemblages, 

thus providing new insight on photoacclimation strategies.  A final benefit from a lidar 

fluorescence channel is that it may provide information on iron-limited growth conditions.  For 

this application, coincident ocean color data will be necessary.   Iron stress in the presence of high 

macronutrients results in the synthesis of non-functional pigment-protein complexes that impact 

fluorescence quantum yields (Behrenfeld et al. 2006; Schrader et al. 2011; Behrenfeld & Milligan 

2013).  Quantum yields could be assessed by normalizing lidar measured fluorescence signals to 
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ocean color based pigment absorption at 532 nm (a product from a spectral inversion algorithm), 

potentially allowing detection of these unique complexes and thus mapping of iron stressed 

populations. 

 A final avenue for advancing ocean satellite lidar capabilities is increasing the number of 

laser spectral emissions to a 3-wavelength system of 355, 532, and 1064 nm.  Multiple benefits 

can be envisioned from the addition of a 355 nm source.  First, under oceanographic conditions of 

low CDOM, 355 nm can penetrate deeper into the water column than 532.  Perhaps more 

importantly, the combination of 355 and 532 nm can provide critical information on water column 

constituents.  On the absorption side of the house, CDOM exhibits an exponential increase in 

absorption with decreasing wavelength, while phytoplankton pigment absorption peaks in the 

visible wavelengths and tends to decrease in the near-ultraviolet.  Thus, the 355 nm lidar 

measurement would enable some separation skill between absorption by CDOM and pigments.  

Differences in backscatter coefficients at 355 and 532 nm could similarly provide information on 

the slope of the particle size distribution, enabling improved assessments of phytoplankton 

biomass and total particulate carbon stocks.  Here again it is important to emphasize the value of 

the HSRL technique, as the accuracy of these important advanced geophysical retrievals will be 

significantly compromised for a simple elastic scattering lidar.  

In closing this section, we note that cloud and aerosol measurements from the ocean-optimized 

lidar described above would have powerful crosscutting applications in science at the ocean-

atmosphere interface and atmospheric science in general. As highlighted in the Intergovernmental 

Report on Climate Change (Stocker 2014), clouds and aerosols are the largest drivers of 

uncertainty in estimates of the Earth’s energy budget.  Accurate measurements of aerosol 

extinction at 532 nm from a spaceborne HSRL would provide significantly improved estimates of 
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aerosol direct radiative effect compared to CALIOP (Thorsen & Fu 2015; Thorsen et al. 2017).  

The 532 nm extinction measurements would also provide a much improved satellite-based proxy 

for the concentration of cloud condensation nuclei (CCN) than is possible from passive sensors 

(Stier 2016), enabling advanced studies of aerosol-cloud interactions.  A polarization-sensitive 

lidar with elastic backscatter channels at 1064 nm and HSRL channels at 532 nm would provide 

vertically-resolved curtains of aerosol type (i.e., identification of aerosol layers as marine aerosol, 

continental pollution, biomass smoke, or dust (Burton et al. 2012; 2014)) and lead to significant 

improvements to chemical transport models.  The addition of HSRL channels at 355 nm would 

enable retrieval of aerosol effective radius and concentration (Müller et al. 2014), providing an 

even better proxy for CCN and valuable data for air quality applications.  Finally, building on the 

work of Hu (2007) and Hu et al. (2007) using CALIOP data, coupling HSRL capability, 

polarization sensitivity, and finer vertical resolution in atmospheric measurements will 

significantly improve retrievals of cloud microphysical properties.   

Table 1 is sort of a ‘shopping list’ summary of measurements enabled by the enhanced 

measurement capabilities described in this section.  The first row in the table represents a CALIOP-

like ‘base-case’, which is then followed by additional rows associated with an added capability 

and the value added for ocean and atmospheric science. 

 

7. AN OPTIMIZED OCEAN-ATMOSPHERE SATELLITE LIDAR 

 We will now consider the design of an ocean-atmosphere optimized lidar with the 

measurement capabilities discussed in Section 6.  To facilitate this description, we have provided 

a basic conceptual illustration of the design in Figure 6.  To begin, the laser transmitter is ‘seeded’ 

by a low-power continuous-wave 1064 nm laser to ensure narrowband frequency-stable output as 

required for the HSRL technique.  The fundamental 1064 nm output of the Pulsed Laser is 
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frequency doubled to 532 nm and tripled to 355 nm, providing output pulses at all three 

wavelengths.  The receiver begins with a 1-1.5 m diameter telescope, similar to CALIOP and the 

European Space Agency (ESA) Aeolus wind lidar due to launch in late 2018.  Light collected by 

the telescope is focused onto a field stop that defines the receiver field-of-view (FOV), which 

would closely match the divergence of the transmitted beam to minimize the collection of diffusely 

scattered sunlight while still collecting most of the backscattered laser light.  Next, the light is re-

collimated into a small-diameter beam (e.g., 2-3 cm) in the receiver and then dichroic beamsplitters 

are used to separate the various wavelengths for additional optical processing.  Narrow-band solar 

rejection filters are employed in the various optical paths to reduce the magnitude of scattered 

sunlight remaining within the FOV. Polarizing beam cubes are further used to resolve the 

backscatter into polarization components that are parallel and perpendicular to the linear 

polarization of the transmitted laser pulses.  

While there are alternate means of doing so, the HSRL technique is implemented here with 

interferometric optical filters that separate the received backscatter onto two detectors: one for 

which the measured backscatter is predominantly from water or air molecules (“Molecular 

Channel”), and the other which measures a combination of particulate and molecular backscatter 

(“Particulate Channel”). As discussed in Section 4, the two HSRL channels essentially provide 

two equations to solve for two unknowns: Kd and, in this case, the co-polarized component of bbp.  

The cross-polarized component of bbp is derived in a similar manner by also employing the signal 

measured on the cross-polarized detector.  Because >99% of the backscatter from water molecules 

maintains the polarization of the transmitted laser pulse, it is convenient to implement the 

interferometer downstream of the polarization beamsplitter.   Finally, the design includes a channel 

for measuring the chlorophyll fluorescence signal in the 680 nm region.  Unlike past airborne 
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fluorescence lidars discussed in Section 4, the chlorophyll fluorescence signal will be normalized 

to the molecular backscatter measured via the HSRL technique and hence not rely on a separate 

water-Raman channel.  

A critical feature in the design is spatial resolution.   The vertical resolution would be ~2-3 m 

in the ocean, which reflects the laser temporal pulsewidth and the detection electronics bandwidth. 

The fundamental along-track horizontal resolution is determined by the receiver FOV and the laser 

repetition rate.  For our concept, the FOV will be set to achieve a 90-m “footprint” diameter at the 

Earth’s surface consistent with CALIOP.  By setting the laser repetition rate to 150 Hz, the 

horizontal spacing between samples will be ~50 m, ensuring contiguous along-track horizontal 

sampling.   

With only a 90-m swath, orbital geometry must be considered to appreciate horizontal 

sampling.    Our envisioned lidar mission would have a sun-synchronous orbit similar to that of 

CALIOP, achieving a global sampling pattern like that in Figure 5a. CALIOP orbits the Earth ~15 

times per day with spacing between consecutive orbits of 2752 km at the equator.  The orbit pattern 

repeats every 16 days resulting in a sampling grid that is spaced by171 km at the equator and 111 

at ±50˚ latitude.  While this sampling is sparse by ocean color standards, the capability for sampling 

day or night, through aerosol layers and tenuous clouds, and in small holes between broken clouds 

means that monthly coverage of lidar data can actually rival that of ocean color (Figure 5d) and, 

in some seasons and latitudes, exceeds that of ocean color (Behrenfeld et al. 2016). 

Clearly, the satellite lidar capabilities described above would provide unprecedented 

contributions to ocean and atmospheric science.  The obvious next question is, does the technology 

exists to build an instrument with these capabilities?   The answer to this question is a resounding 

’yes’.  Much effort has been expended in Europe and the US to develop HSRL capability for space.  
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The European Space Agency (ESA) has built a 355 nm HSRL scheduled to launch on the 

EarthCARE satellite in 2018.  NASA has also focused significant resources on maturation of lidar 

technology, achieving all of the capabilities mentioned above and in Section 6.  In fact, one lidar 

design for the ACE mission concept incorporates all of the capabilities discussed above except for 

the chlorophyll fluorescence channel.  Other NASA programs have contributed to the maturation 

of that design, and an airborne prototype with the capabilities recommended herein is due for flight 

demonstration in 2018.  The ‘bottom line’ is that there is no technical obstacle to the deployment 

of an ocean-atmosphere optimized satellite lidar by the mid 2020s.   

8.  VISION OF A VIRTUAL CONSTELLATION 

 Oceanographic research with satellite lidars is in its infancy.  We hope this review has 

provided a useful description of the lidar technique, an interesting narrative of its history in marine 

applications, an exciting account of recent achievements with the satellite CALIOP sensor, and 

some forward-looking ideas on future scientific pursuits with an advanced satellite lidar based on 

current technological capabilities.   

 Throughout this review, we have contrasted lidar measurements with traditional ocean 

color observations, but the most important message to take from these comparisons is that each 

approach has its strengths and weaknesses.  In constructing a vision for future global ocean 

observing, we have learned from the A-train experience to capitalize on synergies between 

measurement approaches.  An ocean optimized HSRL-type satellite lidar will alone revolutionize 

our understanding of ocean ecosystems, but the benefits of such a mission are greatly expanded if 

coupled to advanced ocean color observations (such as envisioned for the PACE mission sensor).  

Synergies from this pairing maximize global spatial and temporal data coverage, introduce the 

vertical dimension into ecosystem characterizations, and allow cross-instrument data comparisons 
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for algorithm development, improved ocean color atmospheric corrections, and an expansion in 

the diversity of retrieved geophysical properties.    

 Adding a scanning polarimeter to this emerging constellation yields additional synergies.  

A polarimeter would provide valuable information for spatially extending the detailed atmospheric 

characterization from the lidar ‘curtains’, and together these data will further improve ocean color 

atmospheric corrections.  Polarimetry can also provide additional information on particle 

characteristics within the upper water column (Loisel et al. 2008).  Reciprocating, the ocean color 

measurements provide constraints on water leaving contributions to the signal measured by the 

polarimeter. 

 One additional piece that can be added to our measurement constellation is a global array 

of in situ bio-geo-Argo floats.  In addition to providing sustained and coincident field validation 

data for the satellite sensors, these autonomous assets can address a fundamental constraint on all 

known remote sensing technologies: there is a depth-limit to ocean signals observable from space.  

Satellite lidar can push this detection limit to ~3 optical depths, but significant ecosystem and 

biogeochemical processes occur below this depth.  A bio-geo-Argo array could provide a global 

sampling of these deeper properties and, while not at the spatial resolution of remote sensing data, 

a means for extending satellite observables to the deep sea. 

 Figure 7 is an artistic rendering of this virtual ocean observing constellation.  If the PACE 

mission is launched in its desired two-instrument configuration, we would be halfway to realizing 

this broader vision.  Discussions are also underway regarding developing a global bio-geo-Argo 

array and significant investments are already being made in deployments (e.g., the Southern Ocean 

Carbon and Climate Observations and Modeling (SOCCOM) program 

(https://soccom.princeton.edu).  The final piece is an advanced ocean lidar.   

https://soccom.princeton.edu/
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SIDEBAR - BOX 1 

HSRL: TWO MEASUREMENTS, TWO UNKNOWNS 

HSRL designs vary from instrument to instrument, but the fundamental approach is the same.  

We will consider here the simplest of HSRL architectures where there are two detection channels.  

One of these channels is more sensitive to particulate backscatter from the ocean (the middle peak 

in Figure 2) and one is more sensitive to molecular backscatter from seawater itself (the right and 

left peaks in Figure 2).  This separation of the backscatter signal is accomplished in the lidar 

receiver (Figure 1) with a spectral filter (e.g., an interferometer) that has a well characterized 

frequency response.  The two time-resolved signals are combined to form two profiles proportional 

to backscatter at 180˚. The first of these derived profiles, SM(z), represents photons backscattered 

by water (βM): 

 

  𝑆𝑀(𝑧) =  𝐶𝑀 𝛽𝑀  exp[−2 ∫ 𝐾𝑑(𝑧′)𝑑𝑧′𝑧

0
] (𝐴𝑡𝑚𝑜𝑠. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛)2 (1) 

 

where the integral of Kd and the square of the atmospheric transmission account for the attenuation 

that the transmitted and backscattered photons undergo along their optical paths. CM is a channel-

specific instrument constant that incorporates factors like laser energy, telescope area, and the 

efficiency of receiver components. The second profile, SP(z), represents photons backscattered by 

suspended particles in the ocean (βP) and likewise attenuated by the ocean (Kd) and atmosphere: 

 

  𝑆𝑃(𝑧) = 𝐶𝑃 𝛽𝑃(𝑧) exp[−2 ∫ 𝐾𝑑(𝑧′)𝑑𝑧′𝑧

0
] (𝐴𝑡𝑚𝑜𝑠. 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛)2 (2) 

 

where CP is the instrument constant for the second channel. Because the density of seawater 

molecules is relatively constant in the near-surface ocean, the value of βM is well known.  Thus, 

the value of Kd can be calculated from changes in SM(z) from one depth interval to the next through 

the water column: 
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     𝐾𝑑(𝑧) = [−
1

2

𝑑

𝑑𝑧
ln(𝑆𝑀(𝑧))]    (3) 

 

Importantly, the influence of Kd and atmospheric transmission are the same for SP(z) and SM(z).  

Consequently, these two terms cancel in the ratio SP(z):SM(z), allowing the attenuation-corrected 

profile of particulate backscatter at 180˚ to be calculated as: 

 

            𝛽𝑃(𝑧) = 𝛽𝑀  [
𝐶𝑀

𝐶𝑃
] [

𝑆𝑃(𝑧)

𝑆𝑀(𝑧)
 ]    (4) 

 

where the only scaling factors required are estimates of βM (well-known) and the CM:CP ratio 

(which is easily calibrated with high accuracy).  βP is then scaled to hemispheric backscatter, bbp, 

following Boss & Pegau (2001).   

 In summary, the power of the HSRL technique is that it provides two measurements to 

solve for two unknowns and requires only relative (i.e., the CM:CP ratio), rather than absolute, 

calibration.  This contrasts critically from the elastic backscatter lidar technique, which provides 

the combined SP(z)+SM(z) profile only and therefore requires absolute calibration, correction for 

the atmospheric transmission, and either ancillary data or model assumptions on the relationship 

between bbp and Kd to retrieve either one. 

  



pg. 41 
 

TABLES 

Table 1. Summary of the increase in science value with capability from the CALIOP base case. 

 Added Capability Added Value to Ocean Science Added Value to Atmospheric/Land 
Science 

C
A

LI
O

P
 E

q
u

iv
al

en
t 

CALIOP: 

 Elastic 
backscatter 
technique at 
532 and 1064 
nm 

 Depolarization 
at 532 nm 

 Vertical 
resolution: 23-m 
(30-m) ocean 
(atmosphere) 

 Surface-weighted bbp and Kd (not 
independent) 

 Sampling through aerosol layers 
and tenuous cloud 

 Sampling regardless of sun angle 

 Monthly coverage statistics ~50% 
of those for ocean color for 1˚x1˚ 
bins 

 Day-night comparisons possible 

 Cloud vertical distribution and 
microphysical properties relevant 
to radiation budget studies 

 Aerosol vertical distribution and 
scattering properties relevant to 
radiation budget and air quality 
studies. Accuracy limited by 
retrieval assumptions and loss of 
calibration with penetration into 
atmosphere. 

 Crude aerosol typing with high 
uncertainty 

A
b

o
ve

 P
lu

s 

Above plus: 
+ <3-m vertical 

resolution 

 Crude estimates of profile-
average Kd; unknown error due 
to vertical variability in Kd and 
bbp. 

 Crude bbp profiling capability: 
calibration will be an issue 

 Enhanced capability for cloud 
microphysical retrievals 

A
b

o
ve

 P
lu

s Above plus: 
+ HSRL at 532 nm  
+ Depolarization 

at 1064 nm 

 Accurate independent profiles of 
bbp and Kd at 532 nm 

 Calibration maintained through 
ocean column. 

 Products scalable to Cphyto, POC, 
and chlorophyll concentration via 
empirical relationships 

 Vertically-resolved estimates of 
NPP 

 Accurate profiles of aerosol 
extinction and backscatter through 
entire profile and into the BL. 

 Improved satellite CCN proxies  

 Improved air quality estimates    

 Significant skill in aerosol typing and 
partitioning optical depth by type. 

 More accurate estimates of optical 
thickness of tenuous clouds. 

 Advanced cloud microphysical 
retrievals 

A
b

o
ve

 P
lu

s 

Above plus: 
+ Chl 

Fluorescence  

 NPQ 

 Iron stress 
 

A
b

o
ve

 P
lu

s Above plus:  
+ HSRL at 355 nm 
+ Depolarization 

at 355 nm 

 Accurate independent profiles of 
bbp and Kd at 532 and 355 nm 

 Independent estimates of CDOM 
and pigment absorption 

 Information on the slope of the 
plankton size distribution 

 Increased accuracy in vertically-
resolved NPP 

 Aerosol effective radius and 
concentration 

 Enhanced satellite CCN proxies 

 Enhanced air quality estimates 

 Enhanced skill in aerosol typing, 
e.g., discriminating between fresh 
and aged smoke 
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FIGURES 

 
  

Figure 1.  Illustration of the lidar time-of-flight ranging technique.  (a)The laser transmits a short 

(e.g., 15 ns) pulse of laser light which is directed downward.  (b) As the laser pulse travels toward 

Earth, photons are scattered from air molecules and cloud/aerosol particles in the atmosphere.  (c) 

Shortly thereafter, the pulse penetrates the ocean where photons are also scattered by water 

molecules and suspended particles.  Some of the scattered photons in the atmosphere and ocean 

are intercepted by the telescope, and the magnitude of this signal is recorded as a function of time 

by detectors located in the receiver.  (d) Using the speed of light, time is converted to distance, 

creating a vertically-resolved profile of received backscatter.  
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Figure 2. The HSRL technique (Box 1) relies on the spectral separation between 180˚ backscatter 

from seawater and suspended particles (e.g., phytoplankton).  The spectrum of particulate 

backscatter is nearly identical to that of the transmitted single-frequency laser pulse. Molecular 

backscatter, on the other hand, is shifted (~7.5 GHz at 532 nm) and broadened by Brillouin 

scattering processes (Hickman et al. 1991).    
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Figure 3. Along-track ‘curtain’ plots acquired with the NASA airborne HSRL-1 instrument 

on the May 2016 during a NAAMES deployment. (top panel) Vertically resolved aerosol 

backscatter in the atmosphere along the flight track in the North Atlantic.  Vertical scale is 

in kilometers.  (bottom panel) Vertically resolved diffuse attenuation coefficients in the 

ocean along the flight segment delineated by dashed pink arrows.  Vertical scale is in 

meters.  From 35o N to ~40o N, the transect sampled oligotrophic conditions with significant 

subsurface features north of 38o N.  A strong near-surface bloom was encountered between 

~41o N and ~43o N, followed by more mesotrophic waters with significant subsurface 

biomass between ~10 and 20 m depth. 
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Figure 4.  Results from the SABOR field campaign, which encompassed 24 flights with 

the HSRL-1 and 23 ocean sampling stations on the RV Endeavor.  (a) MODIS Kd at 488 

nm values (Lee et al. 2005) for July 18, 2014 (background color) and Kd retrieved with 

the HSRL-1 along a flight track on the same day (white outlined data; modified from Hair 

et al., 2016).  HSRL-1 Kd values were calculated at 10 m depth and converted to 488 nm 

by accounting for the difference in pure seawater absorption.  (b) Kd matchup data from 

HSRL-1 and MODIS for all flights during the SABOR campaign (modified from Hair et 

al., 2016).  (c) Comparison of bbp profiles from HSRL-1 (532 nm, red line) and in situ 

measurements (529 nm, black line) from a Wet Labs ECO BB3 instrument (modified 

from Schulien et al., 2017).  (d) Matchup comparison of HSRL-1 and in situ bbp data from 

the 16 offshore SABOR stations where overboard optical casts had near-coincident HSRL 

measurements (modified from Schulien et al., 2017).  Colors indicate the optical depth of 

each sample.   
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Figure 5.   Sampling of the global ocean with CALIOP. (a) CALIOP ground tracks achieved 

within a single 16‐day repeat cycle.  Red lines = 55o to 65o North latitude section used to compare 

CALIOP and MODIS data coverage in panel d.  (b) CALIOP-based climatological annual average 

phytoplankton biomass (Cphyto) for the 2006 to 2012 period reported by Behrenfeld et al. (2013). 

(c)  Location of all field bbp data in the NASA SeaBASS data archive.  These data required 13 

years to collect, yet still leave most of the ocean unsampled in space and time.  By comparison, 

CALIOP can provide an unbiased global sampling of bbp every 16 days that can be used for global 

ocean science investigations and to refine algorithms for passive ocean color retrievals. (d) 

Comparison of CALIOP and MODIS pixel coverage per month for the 55o to 65o North latitude 

section identified in panel a (from Behrenfeld et al. 2016). Filled and unfilled symbols = Total 

number of 1o latitude × 1o longitude ice‐free ocean pixels per month with valid CALIOP and 

MODIS bbp data, respectively. 
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Figure 6.   Simplified block diagram of primary components in the advanced spaceborne ocean-

atmosphere optimized lidar discussed in Sections 6 and 7.    
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Figure 7.  Artistic rendering of a virtual ocean observing constellation including complementary 

HSRL, ocean color, and polarimeter instruments supplemented by in situ Bio-Geo-Argo floats that 

extend the depth-resolving capability of the lidar. 
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FIGURE CAPTIONS 
 

Figure 1.  Illustration of the lidar time-of-flight ranging technique.  (a)The laser transmits a short 

(e.g., 15 ns) pulse of laser light which is directed downward.  (b) As the laser pulse travels toward 

Earth, photons are scattered from air molecules and cloud/aerosol particles in the atmosphere.  (c) 

Shortly thereafter, the pulse penetrates the ocean where photons are also scattered by water 

molecules and suspended particles.  Some of the scattered photons in the atmosphere and ocean 

are intercepted by the telescope, and the magnitude of this signal is recorded as a function of time 

by detectors located in the receiver.  (d) Using the speed of light, time is converted to distance, 

creating a vertically-resolved profile of received backscatter.  

 

Figure 2. The HSRL technique (Box 1) relies on the spectral separation between 180˚ backscatter 

from seawater and suspended particles (e.g., phytoplankton).  The spectrum of particulate 

backscatter is nearly identical to that of the transmitted single-frequency laser pulse. Molecular 

backscatter, on the other hand, is shifted (~7.5 GHz at 532 nm) and broadened by Brillouin 

scattering processes (Hickman et al. 1991).    

 

Figure 3. Along-track ‘curtain’ plots acquired with the NASA airborne HSRL-1 instrument on the 

May 2016 during a NAAMES deployment. (top panel) Vertically resolved aerosol backscatter in 

the atmosphere along the flight track in the North Atlantic.  Vertical scale is in kilometers.  (bottom 

panel) Vertically resolved diffuse attenuation coefficients in the ocean along the flight segment 

delineated by dashed pink arrows.  Vertical scale is in meters.  From 35o N to ~40o N, the transect 

sampled oligotrophic conditions with significant subsurface features north of 38o N.  A strong 
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near-surface bloom was encountered between ~41o N and ~43o N, followed by more mesotrophic 

waters with significant subsurface biomass between ~10 and 20 m depth. 

 

Figure 4.  Results from the SABOR field campaign, which encompassed 24 flights with the 

HSRL-1 and 23 ocean sampling stations on the RV Endeavor.  (a) MODIS Kd at 488 nm values 

(Lee et al. 2005) for July 18, 2014 (background color) and Kd retrieved with the HSRL-1 along a 

flight track on the same day (white outlined data; modified from Hair et al., 2016).  HSRL-1 Kd 

values were calculated at 10 m depth and converted to 488 nm by accounting for the difference in 

pure seawater absorption.  (b) Kd matchup data from HSRL-1 and MODIS for all flights during 

the SABOR campaign (modified from Hair et al., 2016).  (c) Comparison of bbp profiles from 

HSRL-1 (532 nm, red line) and in situ measurements (529 nm, black line) from a Wet Labs ECO 

BB3 instrument (modified from Schulien et al., 2017).  (d) Matchup comparison of HSRL-1 and 

in situ bbp data from the 16 offshore SABOR stations where overboard optical casts had near-

coincident HSRL measurements (modified from Schulien et al., 2017).  Colors indicate the optical 

depth of each sample.  

 

Figure 5.   Sampling of the global ocean with CALIOP. (a) CALIOP ground tracks achieved 

within a single 16‐day repeat cycle.  Red lines = 55o to 65o North latitude section used to compare 

CALIOP and MODIS data coverage in panel d.  (b) CALIOP-based climatological annual average 

phytoplankton biomass (Cphyto) for the 2006 to 2012 period reported by Behrenfeld et al. (2013). 

(c)  Location of all field bbp data in the NASA SeaBASS data archive.  These data required 13 

years to collect, yet still leave most of the ocean unsampled in space and time.  By comparison, 

CALIOP can provide an unbiased global sampling of bbp every 16 days that can be used for global 

ocean science investigations and to refine algorithms for passive ocean color retrievals. (d) 
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Comparison of CALIOP and MODIS pixel coverage per month for the 55o to 65o North latitude 

section identified in panel a (from Behrenfeld et al. 2016). Filled and unfilled symbols = Total 

number of 1o latitude × 1o longitude ice‐free ocean pixels per month with valid CALIOP and 

MODIS bbp data, respectively. 

 

Figure 6.   Simplified block diagram of primary components in the advanced spaceborne ocean-

atmosphere optimized lidar discussed in Sections 6 and 7.    
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