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Abstract 17 
Since Chaney’s report1, the range of global warming projections in response to a doubling 18 
of CO2—from 1.5 °C to 4.5 °C or greater2-7 —remains largely unscathed by the onslaught 19 
of new scientific insights. Conventional thinking regards inter-model differences in climate 20 
feedbacks as the sole cause of the warming projection spread (WPS)8-14. Our findings shed 21 
new light on this issue indicating that climate feedbacks inherit diversity from the model 22 
control climate, besides the models’ intrinsic climate feedback diversity that is independent 23 
of the control climate state. Regulated by the control climate ice coverage, models with 24 
greater (lesser) ice coverage generally possess a colder (warmer) and drier (moister) 25 
climate, exhibit a stronger (weaker) ice-albedo feedback, and experience greater (weaker) 26 
warming. The water vapor feedback also inherits diversity from the control climate but in 27 
an opposite way: a colder (warmer) climate generally possesses a weaker (stronger) water 28 
vapor feedback, yielding a weaker (stronger) warming. These inherited traits influence the 29 
warming response in opposing manners, resulting in a weaker correlation between the 30 
WPS and control climate diversity. Our study indicates that a better understanding of the 31 
diversity amongst climate model mean states may help to narrow down the range of global 32 
warming projections.  33 
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 Why do different climate models, under the same anthropogenic forcing, produce different 34 
amounts of global mean surface warming? A definitive answer to this question is central to the 35 
current scientific and societal deliberation, and will alter ongoing adaptation and mitigation 36 
efforts and future climate policy15-16. Efforts to address this question often focus on the climate 37 
model response and feedbacks8-14, as a clear mathematical framework based on energy balance 38 
describes the relationship between climate feedbacks and surface warming. This ‘climate 39 
feedback lens’ has zoomed in on cloud feedback and revealed specifically marine stratocumulus 40 
low clouds as the largest contributor to climate change uncertainty17–19. This conventional view 41 
holds radiative feedbacks as the sole culprit for the global warming projection spread (WPS) 42 
among different climate models’ equilibrium (or transient) response to the same anthropogenic 43 
greenhouse radiative forcing, while directing little attention to the diversity among model control 44 
climates. Several studies have revealed that the control climate sea ice characteristics regulate the 45 
ice-albedo feedback20-26, as more extensive sea ice coverage contributes to a stronger ice-albedo 46 
feedback due to an increased potential for ice melt20,23. Therefore, control climate influences a 47 
model’s response to a radiative forcing by modulating the ice-albedo feedback strength. 48 
 Here we argue that it would be more fruitful to distinguish the climate feedback diversity that 49 
is strongly dependent of models’ control climate state from the intrinsic climate feedback 50 
diversity that is independent from the control climate state. Both types of climate feedback 51 
diversities are rooted on the diversity in physical and dynamical parameterizations27-28. Even 52 
different parameterizations of various sub-grid processes could compensate one another to reach 53 
the same control climate state, they might not be able to do so when subject to an external 54 
climate forcing, giving rise to the second type of climate feedback diversity. Furthermore besides 55 
the lack of compensating effects between different parameterizations, causing control climate 56 
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diversity as well as the associated climate feedback diversity, control climate state diversity can 57 
also be due to the existence of multiple equilibrium states for the same energy input to the 58 
climate system29-30. Such diversity in control climates, under the same external forcing, may 59 
explain a portion of the uncertainty in global warming projections. In this study, we focus on the 60 
evidence for the climate feedback diversity that is inherited from the control climate diversity. 61 
We wish to further demonstrate that besides the ice coverage diversity, differences in models’ 62 
other variables describing the control climate state, such as water vapor content, can also 63 
contribute to the climate feedback diversity. The compensating effect of climate diversity 64 
associated with different climate variables inherited from control climate diversity makes the 65 
relationship between WSP and control climate diversity less obvious or obscured. The 66 
recognition of the inheritance of the WPS from the diversity of model control climate states 67 
provides a new pathway for understanding and reducing model uncertainty. 68 
Definition of key climate variables 69 

We consider 31 140-year CMIP5 (the phase 5 of the Coupled Model Intercomparison 70 
Project) climate simulations under the same solar energy input plus a steady, 1% per year CO2 71 
increase starting from the pre-industrial CO2 concentration level of 280 PPMV (the 1pctCO2 72 
experiments, Supplementary Table S1). We consider eight key climate variables (Supplementary 73 
Table S2 and S3): (i) surface temperature (T), (ii) vertically integrated atmospheric water vapor 74 
content (q), (iii) vertically integrated cloud water/ice content (CL), (iv) area covered by ice/snow 75 
(IC), (v) the difference between the net downward radiative fluxes at TOA and the net energy 76 
flux at the surface whose spatial pattern measures the strength of the total energy transport by 77 
atmospheric motions (DYN), (vi) evaporation (E), (vii) the difference between surface 78 
evaporation (E) and precipitation (E – P) whose spatial pattern measures the strength of 79 
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atmospheric latent heat transport, and (viii) surface sensible heat flux (SH). Considered at the 80 
time of CO2 quadrupling (4×CO2), the transient climate response (denoted as Δ) is defined as the 81 
difference between the perturbed and control climate states specified as the average over the last 82 
10-year period minus the first 10-year period. For the sake of brevity, we use “{Xj}” to denote a 83 
series of 31 values of Xj, or { Xj, j =1, 2 ..., 31}, where Xj is the departure in the jth experiment 84 
from the ensemble mean of the 31 1pctCO2 experiments of the climate mean or its change of a 85 
climate variable X (see Data and Methods for details).  The spread of X among the 31 86 
experiments can be measured by a norm of {Xj}(e.g., the square root of the sum of the square of 87 
Xj over j). For an easy reference, we also refer to {Xj} as the spread of X without the phrase “the 88 
norm of {Xj}”, besides that {Xj} stands for the series of 31 values of Xj. 89 
 We use {<ΔTj>} (“< >” denotes the global mean) obtained from different models’ 1pctCO2 90 
experiments as the individual models’ transient climate responses to CO2 quadrupling forcing 91 
and their numerical differences correspond to the warming projection spread (WPS). Besides the 92 
31 values of <ΔTj>, we also consider changes in other 7 climate variables derived from these 31 93 
1pctCO2 experiments. Specifically, {<Δqj>} corresponds to the spread of the transient response 94 
in the global mean total atmospheric water vapor content, measuring the global water vapor 95 
feedback strength spread. Similarly, we use {<ΔCLj>},  {<ΔICj>},  {<Δ|DYNj|>} (“| |” denotes 96 
the absolute value), {<ΔEj>}, {<Δ|Ε� − Pj|>}, and {<ΔSHj>}, respectively, to measure the 97 
spreads in the global cloud feedback, the global ice albedo feedback, the atmospheric energy 98 
transport feedback, the evaporation feedback, the hydrological cycle response, and in the surface 99 
sensible heat flux feedback. In short, the spreads of {<Δqj>}, {<ΔCLj>}, and  {<ΔICj>}, 100 
represent the spread in the key thermodynamic feedback agents considered in the conventional 101 
partial radiative perturbation feedback analysis12, while the remaining 4 spreads collectively give 102 
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rise to the lapse-rate feedback spread due to non-radiative feedback agents31-32. See Data and 103 
Methods for correlation, partial correlation, and covariance analyses that relate the 31 values of 104 
<ΔTj> or the WPS, to the spreads in these climate feedback agents and to their mean values in 105 
the control climate state). 106 
Spreads in global warming projections, climate feedbacks, and control climate states 107 
 Figure 1 shows {<ΔTj>} obtained from the 31 1pctCO2 experiments as a function of model 108 
integration time. The WPS among these 31 simulations emerges shortly after the simulation 109 
begins displaying a range of 2.5 °C to 5.2 °C at the time of 4×CO2. Indicated by Fig. 2a, a 110 
significant portion of this WPS is explained by the diversity in key control climate variables. The 111 
largest correlation is found to be between {<Tj>} and {<ΔTj>} (−0.51), implying colder models 112 
experience greater warming. Often accompanying colder <Tj>, models with larger <ICj> have 113 
greater melt potential (Fig. 2a and Supplementary Fig. S2), which favors an enhanced ice-albedo 114 
feedback and thereby a stronger warming12,23. The spread in dynamic energy transport also 115 
positively correlates (0.47; Fig. 2a) with WPS indicating that models with stronger poleward 116 
energy transport experience greater warming. Though weaker in magnitude, {<Ej>}, {<|Ej− Pj|>}, 117 
and {<CLj>} also show statistically significant correlations with {<ΔTj>}. 118 
 Indeed, spreads of individual climate feedbacks describe a significant portion of the WPS. 119 
The correlation between WPS and {<ΔICj>} (−0.83; Fig. 2b) indicates that more ice melt relates 120 
to larger warming. Figure 2b also shows large correlations of {<ΔEj>} (={<ΔPj>}) (0.85) and 121 
{<Δqj>} (0.81) with WPS; models with larger increases in {<ΔEj>}, {<ΔPj>} and {<Δqj>} 122 
experience greater warming. Unlike Fig. 2a, Fig. 2b indicates no other statistically significant 123 
correlations besides those aforementioned.   124 
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Two types of inherited traits from control climate states   125 
 The correlations in Fig. 2a suggest that the WPS is associated with the control climate 126 
diversity. Employing a series of partial regression analyses (see Data and Methods), we link the 127 
WPS to differences in climate feedbacks and then analyze the associations of feedback 128 
differences with control climate features. As indicated in Fig. 2b, {<ΔICj>}, {<ΔEj>} 129 
(={<ΔPj>}), and {<Δqj>} each exhibits a nearly identical high correlation with the WPS. It is 130 
seen that the association of the control climate spread with {<ΔICj>} (Fig. 3) is most similar to 131 
that associated with the WPS (Fig. S2), compared to the other two possible permutations 132 
(Supplementary Fig. S3 for {<ΔEj>} and Supplementary Fig. S4 for {<Δqj>}). This implies that 133 
the linkage of the WPS to the control climate spread can be explained more through the linkage 134 
of {<ΔICj>} to the control climate spread than {<ΔEj>} and {<Δqj>}, although their correlations 135 
with the WPS are about the same. Therefore, we choose <ΔICj> as the starting point of the 136 
successive partial correlation analysis. Figure 3 (inner panel) demonstrates the interdependence 137 
of the climate response variables, indicating that 41% and 25% of {<ΔEj>} and {<Δqj>} are 138 
related to {<ΔICj>} (i.e., the square of the correlations shown in Table S4), respectively. 139 
Together with the correlation information in Fig. 2b, the analysis indicates that a stronger 140 
warming projection accompanies greater depletion of <ΔICj>, and increased <ΔEj> and <Δqj>.  141 
 The magnitude of a model’s <ΔICj> relates to robust control climate characteristics. Figure 3 142 
appraises the relationship between the zonal mean profiles of the 8 control climate variables and 143 
{<ΔICj>} (outer panels). Warmer, rainier, more moist, and greater melting at the time of 4×CO2 144 
is associated with a control climate that is (a) much colder, particularly over the Antarctic, (b) 145 
much drier in the tropics but more moist in the northern extratropics, (c) less global cloudiness, 146 
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(d) more ice/snow coverage, particularly in the Antarctic, (e) a stronger poleward energy and 147 
moisture transport, as indicated by positive values of the net radiative fluxes at the TOA in the 148 
tropics but negative values in the polar regions (Fig. 3e), and (f) less rainfall, particularly over 149 
the deep tropics. We term the control climate-WPS relationship described in (a)-(f) “type-A”. 150 
Subject to an anthropogenic radiative forcing, the “type-A” relationship predicts that a model 151 
with a colder (warmer) control climate state experiences larger (smaller) warming with a greater 152 
(lesser) melting of ice/snow, stronger (weaker) enhancement of rainfall and evaporation, and 153 
greater (smaller) increase in water vapor. 154 
 The residual fields, obtained by removing the aforementioned relationships with {<ΔICj>}, 155 
attribute the remaining WPS largely to the residual spread of {<Δqj>}, denoted as {<Δqj>

residual} 156 
(Supplementary Fig. S5). Fig. 4. (inner panel) shows that {<Δqj>

residual} accounts for 75%, 31%, 157 
and 21% of the total spreads of {<Δqj>}, {<ΔEj>}, and {<ΔTj>}, indicating that the coupling 158 
between <Δqj> and the other climate responses (Supplementary Table S4) remains discernable 159 
after removing the portion coupled with {<ΔICj>} (Supplementary Fig. S5). The spreads of 160 
changes in poleward energy ({<Δ|DYNj|>}) and latent heat ({<Δ|Ej–Pj|>}) transport possess 161 
particularly strong correlations with {<Δqj>

residual} (Fig. 4 and Supplementary Fig. S5). The 162 
residual spread signals that models with a greater increase in atmospheric water vapor, 163 
strengthened poleward energy transport as well as latent heat transport, and increased global 164 
cloud coverage warm more. Furthermore, there exists a robust relationship linking {<Δqj>

residual} 165 
and the remaining WPS to the residuals of the control climate spread (outer panels Fig. 4). In 166 
opposition to “type-A”, the residual control climate spread indicates that a warmer control 167 
climate with less ice coverage is associated with a greater increase in water vapor and larger 168 
warming. We term this control climate-WPS relation as “type-B”. The “type-A” relation 169 
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accounts for the spread of {<ΔICj>} and most of the WPS, while the “type-B” relation accounts 170 
for most of the remaining portion of the WPS and variance in {<Δqj>}. 171 
 Considering control climate diversity, global mean surface temperature response, and climate 172 
feedbacks, a story emerges connecting WPS and control climate characteristics. The spreads of 173 
{<ΔICj>} and {<Δqj>} exhibit robust relationships with spreads in control climate characteristics, 174 
signaling inherited diversity. A “type-A” relationship indicates that a stronger (weaker) ice-175 
albedo feedback corresponds to colder (warmer) control climate with more (less) ice coverage 176 
and greater (lesser) warming. Subsequently, a “type-B” relationship indicates that a stronger 177 
(weaker) water vapor feedback corresponds to a warmer (colder) control climate with less (more) 178 
ice/snow coverage and more (less) warming. For the type-A control climate, the spread in ice-179 
albedo feedback strength drives the WPS, whereas the water vapor feedback spread drives the 180 
WPS for type-B. If type-A explained all of the WPS, we would expect a large inter-model spread 181 
for the ice-albedo feedback but a relatively small one for the water vapor feedback with the 182 
warming projection having a strong negative correlation to the control climate temperature. The 183 
converse would be true for the type-B scenario with the warming projection positively correlated 184 
to the control climate temperature. Therefore, these control climate-climate response 185 
relationships dictate a small chance of finding a model with an abnormally strong ice-albedo and 186 
water vapor feedback relative to other models. This control climate-climate feedback behavior 187 
also explains the weaker correlations between the WPS and the control climate diversity as 188 
compared to the climate feedback diversity. The opposing effects of control climate diversity on 189 
the ice-albedo and water vapor feedbacks obscures the relationship between WPS and control 190 
climate state diversity and has likely contributed to the lack of investigation into control climate-191 
WPS relationships to understand uncertainty.  192 
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Conclusions 193 
 Tracing the part of the WPS that is inherited from the diversity in the control climate state 194 
opens a new chapter to the WPS story, although it does not consider the scenario that different 195 
climate models can still have different global warming projections even if they have the same 196 
control climate state. Robust links between control climate, climate response, and the WPS 197 
provide supporting evidence for the emergent need to constraint model mean climate state for 198 
refining climate model projections33,34. Specifically, WPS is related to control climate 199 
temperature and ice/snow cover in the Antarctic and the Southern Ocean supporting ongoing 200 
efforts to understand the underlying physical processes over this region35,36. Unraveling 201 
relationships between the control climate states and climate responses show promise for reducing 202 
climate change uncertainty. Given the significant diversity among model control climates, this 203 
approach shows significant potential for narrowing the WPS. We do not challenge conventional 204 
thought on the importance of climate feedbacks, but enrich it by demonstrating that the inter-205 
model spread in climate feedbacks partially inherits diversity from model control climates. New 206 
insights about the competing influences of the control climate on ice-albedo and water vapor 207 
feedbacks mark an important step forward. The control climate perspective allows us to probe 208 
deeper into the physics driving our climate models and their response. Hopefully, these new 209 
insights reopen an old and underexplored line of inquiry enabling us to pierce the unscathed 210 
armor surrounding WPS. 211 
Data and Methods  212 
Data  213 

All data used in this study are derived from the monthly mean outputs of the CMIP5 214 
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1pctCO2 experiments. We only consider the first 140 years of simulated output fields. The 215 
information of model names and spatial resolutions of the 36 1pctCO2 experiments’ outputs is 216 
provided in Supplementary Table S1 and all data are archived and freely accessible at 217 
http://pcmdi9.llnl.gov/. We consider 31 of these models because (a) two of them were made 218 
without continuous increase of CO2 concentration after reaching the 2xCO2 and (b) three models 219 
did not provide the required outputs, such as 3D cloud fields.  220 
Key climate state variables and definitions of various averages 221 

Eight key climate state variables are constructed at their native grids from the output fields 222 
listed in Supplementary Table S2. The definitions of the 8 key climate state variables and their 223 
units are provided in Supplementary Table S3. Because the native grids of different 1pctCO2 224 
experiments have different spatial resolutions, we first calculate the zonal average of each key 225 
climate state variable at 18 10°-latitude wide bands, {φ0,  (φ0  +  π/18)} with226 

 according to  227 
Fj (n,  φ0 ) = 9

π 2 cosφ dφ f j (n,φ,λ )dλ0
2πφ0

φ0 +π /18
  (1) 228 

where λ  is longitude and f j (n) is one of the 8 key climate state variables (i.e., n = 1, …, 8) at 229 
their native grids of the jth 1pctCO2 experiment with j = 1, 2, …, 31.  230 
 We define the first 10-year average of Fj (n,  φ0 )  as the climate mean state of the jth 1pctCO2 231 
experiment, denoted as F j (n,  φ0 ) . The ensemble mean of F j (n,  φ0 )  averaged over the 31 232 
experiments is referred to as the ensemble mean climate state and the departure of F j (n,  φ0 ) for 233 
each j from the ensemble mean state measures the climate mean state diversity (or spread) of the 234 
jth 1pctCO2 experiment, denoted as Fj (n,  φ0 ) . The difference between the 10-year average of 235 
Fj (n,  φ0 )  

taken from 130 to 140 years and F j (n,  φ0 )  corresponds to the (transient) climate 236 
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response of Fj (n,  φ0 )  
at the time of 4×CO2, denoted as ΔF j (n,  φ0 ) . The departure of ΔF j (n,  φ0 )  237 

for each j from the ensemble mean of ΔF j (n,  φ0 )  averaged over the 31 experiments is denoted 238 
as ΔFj (n,  φ0 ) , measuring the uncertainty (or spread) in projecting the change/trend in the 239 
variable F by the jth 1pctCO2 experiment. The global mean of ΔFj (n,  φ0 )  is obtained by 240 
averaging ΔFj (n,  φ0 ) 

over the 18 10°-latitude wide bands  φ0 , denoted as < ΔFj (n,  φ0 ) > . We 241 
then we use “{Xj}” to denote the series of 31 values of Xj , where Xj can be Fj (n,  φ0 )  at φ0,  or 242 
ΔFj (n,  φ0 ) at φ0,  or their global means. 243 
Analysis Procedures 244 

All variance, correlation, and regression calculations are done for inter-model spreads (i.e., 245 
the corresponding calculations are done over j). The statistical significance of correlations is 246 
evaluated using the Student’s t-test. In the remaining discussion, we specifically use n = 8 for 247 
surface temperature T and the rest of n (n = 1, 2, … 7) for the other 7 variables. The following is 248 
the procedure for calculating the results shown in Figures 3 and 4.  249 
(a) Identify n ≠ 8  such that the correlation between {< ΔTj >} = {< ΔFj (n = 8,  φ0 ) >}  and 250 

{< ΔFj (n0,  φ0 ) >}  is maximum among all correlations of {< ΔTj >}  with {< ΔFj (n ≠ 8,  φ0 ) >}. 251 
(b) Calculate covariance of {Xj} with {< ΔFj (n0,  φ0 ) >} , denoted as cov({< ΔFj (n0,  φ0 ) >},{X j }), 252 

where Xj is one of the 152 variables (8 for {< ΔFj (n,  φ0 ) >}and 8×18 for 8 {Fj (n,  φ0 )} at the 253 
18 latitude bands  φ0 . Then the correlation (“a”) and regression (“r”) coefficients are 254 
evaluated according to 255 
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a({< ΔFj (n0,  φ0 ) >},{X j }) =
cov({< ΔFj (n0,  φ0 ) >},{X j })

cov({< ΔFj (n0,  φ0 ) >},{< ΔFj (n0,  φ0 ) >}) × cov({X j },{X j })
(2) 256 

r({< ΔFj (n0,  φ0 ) >},{X j }) =
cov({< ΔFj (n0,  φ0 ) >},{X j })

cov({< ΔFj (n0,  φ0 ) >},{< ΔFj (n0,  φ0 ) >})
(3)257 

(c) Construct the residual spread of Xj according to,258 
X j

residual = X j − r({< ΔFj (n0,  φ0 ) >},{X j }) < ΔFj (n0,  φ0 ) >  
(4)259 

where r({< ΔFj (n0,  φ0 ) >},{X j }) < ΔFj (n0,  φ0 ) >
 
is the part spread of Xj that can be explained 260 

by the spread of {< ΔFj (n0,  φ0 ) >} . 261 
(d) Replace {< ΔTj >}  with {< ΔTj >residual }  and {Xj } with  { X j

residual } and repeat the steps262 
(a) - (c) until none of  {< ΔFj (n,  φ0 ) >residual } for the remaining n statistically significantly263 
correlated with {< ΔTj >residual } .264 
Note that < ΔFj (n0,  φ0 ) >residual = 0  for all j since by definition, 265 
r({< ΔFj (n0,  φ0 ) >},{< ΔFj (n0,  φ0 ) >}) < ΔFj (n0,  φ0 ) >  ≡  < ΔFj (n0,  φ0 ) > . It follows that we 266 
always end up with a distinct value of n0 in the new round of the steps (a) - (b). 267 
Shown in Fig. S5 and the inner panels of Figs. 3-4 are the square of these correlation coefficients 268 
and outer panels of Figs. 3-4 and S2-4 are 269 
r({< ΔFj (n0,  φ0 ) >},{ΔFj (n0,  φ0 )}) × cov({< ΔFj (n0,  φ0 ) >},{< ΔFj (n0,  φ0 ) >}) .  270 
Online Content Source Data, model variables, definitions and extended data display items are 271 
available in the online version of the paper, references unique to these sections appear only in the 272 
online paper. 273 
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 374 
Figure 1. Time series of global mean surface temperature change of the 31 CMIP5 1pctCO2 375 
experiments relative to their corresponding first 10-year averages (labeled as “Year 0” which has 376 
been set to zero for each curve). The color scheme for these 31 curves represents the global and 377 
time mean surface temperature of the first 10-year simulations of the 31 CMIP5 1pctCO2 378 
experiments. The color scheme is arranged in such a way that the control climate state ranges 379 
from the coldest to the warmest as the color changes from blue to red.   380 
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 381 
Figure 2. Correlation coefficients between the warming projection spread (WPS) and (a) spreads 382 
in the eight key control climate state variables, (b) spreads in the key climate variable transient 383 
responses to 4xCO2. Numbers in orange and blue colored (black) circles indicate the correlation 384 
coefficients (do not) exceed 90% confidence level.  385 
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  386 
Figure 3. Latitudinal profiles (outer panels) of the regressed spreads of the zonal mean control 387 
climate states (a-h) against the projected spread in the change of total area coverage by ice/snow. 388 
(a) surface temperature (T in units of K), (b) total area covered by ice/snow (IC in units of km2), 389 
(c) vertically integrated atmospheric water vapor content (q in units of g m-2), (d) vertically 390 
integrated cloud water/ice content (CL in units of g m-2), (e) net downward radiative fluxes at 391 
TOA which measures the strength of the total atmosphere-ocean energy transport (DYN in units 392 
of W m-2), (f) surface sensible heat flux (SH in units of W m-2), (g) difference between surface 393 
evaporation rate and precipitation rate (E − P in units of kg m-2 yr-1), and (h) precipitation rate  (P 394 
in units of kg m-2 yr-1). The numbers inside the circles of the inner panel correspond to the 395 
percentage of the spread, in the global mean changes of the eight key climate state variables that 396 
can be explained by the spread in the change of total ice/snow area coverage. Orange and blue 397 
colored (grey) bars indicate the correlation coefficients (do not) exceed 90% confidence level. 398 
  399 
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  400 
Figure 4. As in Figure 3 except for the portion of each corresponding variable not correlated with 401 
the spread the total ice/snow area coverage response. All correlations are made with the 402 
remaining spread (75%) in the total column-integrated atmospheric water vapor response. The 403 
numbers inside the inner panel circle still represent the percentage of the spread, in the global 404 
mean changes of the eight key climate state variables that can be explained by the remaining 405 
portion of the spread in the total column-integrated atmospheric water vapor response. 406 


