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Turbofan hot-section unsteady pressure measurements are complicated by environmental
limitations of current-generation sensors. Accurate direct measurements are normally not
possible and engine-external measurement techniques, using sufficiently long sense lines, are
utilized instead. Remote measurement comes at a cost, however, as it introduces a magni-
tude reduction within the line as well as a phase lag relative to the desired engine-internal
measurement location. Determination, or validation, of a transfer function relating the engine-
internal pressure to the observed remote value is necessary. Transfer functions are examined
for various configurations of the so-called infinite-tube-probe arrangement in order to opti-
mize measurement performance. The experimental setup uses a normal-incidence tube that
ordinarily is utilized for impedance eduction. Here, its downstream end instead is made up of a
hard-wall termination instrumented with a flush-mounted microphone and a Kulite® pressure
transducer as well as a sense line connection. This allows the remote and direct measurements
to be related under controlled conditions. Transfer-function measurements are presented and
compared to predictions for several parametric variations.

I. Introduction

The current turbofan-engine design trends [1] of lean-burning combustors and smaller high-pressure-ratio cores
in combination with lower-blade-count, wide-chord-blade turbines and lower-jet-exhaust velocities, are expected

to make core/combustor noise a more prominent propulsion-noise source in the future [2, 3]. Consequently, a better
understanding of the source mechanism(s) of combustor noise is imperative. This can ultimately only be achieved by
utilizing advanced source-separation techniques [4–9] that often combine engine-internal measurements with farfield
acoustic measurements. Such source-separation methods are needed because combustor noise is normally masked by
jet noise under static-engine-test conditions due to the absence of forward-flight effects. Engine hot-section unsteady
pressure measurements are also useful for a variety of other applications such as thermo-acoustic-instability control, etc.

Direct measurement of unsteady pressures within the core of a turbofan engine is often impossible due to the
extreme environment (high-temperature, high-pressure). Consequently, pressure transducers are mounted externally and
coupled to the desired measurement location with a sufficiently long waveguide. However, this sense line introduces
both a magnitude drop and a phase lag relative to the unsteady pressure at the intended measurement location inside
the core. In addition, reflections from the waveguide termination can lead to standing-wave resonances that degrade
the measurement capability. For this reason, the waveguide is commonly continued past the pressure transducer for a
sufficiently long distance such that reflected pressure fluctuations are attenuated through dissipation well before reaching
the transducer location. The ‘infinite’ line segment is normally much longer than the sense line (between the probe
tip and the transducer). This arrangement is commonly referred to as the infinite-tube-probe (ITP) configuration, or
sometimes as the semi-infinite-tube configuration. The former nomenclature, rather than the latter, will be used herein.

The remote measurement approach utilizing an ITP is a reasonably well-established method for measurement under
conditions that the transducers cannot directly tolerate [10, 11]. However, the experimental determination/validation of
a transfer function relating the desired unsteady pressure to the ITP-transducer measured value is necessary, particularly
if the instrumentation layout requires a long sense line or if higher frequencies (say, a couple of kHz) are considered
important. Transfer functions are examined herein for various ITP configurations in order to optimize measurement
performance under design constraints relevant to engine tests.
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The outline of the paper is as follows: The experimental setup is described in Section II; a formula for the transfer
function, using existing theory [12–14], is discussed in Section III, with more details given in Appendices A and B; the
results are described in Section IV; and finally, Section V offers a summary, conclusions, and recommendations.

II. Experimental Setup

The experiment is performed using a simple modification of an existing normal-incidence tube (NIT) at NASA Glenn
Research Center (GRC). The NIT’s 2 inch × 2 inch (50.8mm × 50.8mm) square cross section and acoustic driver

offer a useful frequency range of approximately 500Hz to 3 kHz. Instead of a holder for a sample liner (whose impedance
characteristics are of interest), the tube is fitted with a modified hard-wall termination containing a flush-mounted
1/4-inch GRAS front-vented pressure-field microphone (Model 46BD-FV), a flush-mounted Kulite® high-sensitivity
10 psid pressure transducer (XCS-190S-10D) and an ITP sense-line connector. The ITP uses an identical type Kulite®

transducer. Figure 1 shows the entire NIT from speaker (left) to termination (right) and Fig. 2 shows the termination of
the tube in more detail. Several parametric variations are considered, three of which are reported here. They are: (i) the
presence and absence of the ITP’s 50 ft (15.24m) infinite waveguide coil; (ii) closed (capped) and open terminations of
the waveguide; and (iii) two different internal diameters of the waveguide.

Fig. 1 Normal incidence tube with source driver (left) and termination plate (right) with ITP, flush-mounted
microphone and pressure transducer

A particular ITP is shown in Fig. 3, without its infinite line connected. This ITP was used in the 2017 DART
Core/Combustor-Noise Baseline Test [9]. The stainless steel tubing has a nominal inner diameter of 0.194 inch (4.93mm)
and the sense-line length is 14.5 inch (0.3683m). The latter measurement has an uncertainty of about 2%. The Kulite®

pressure sensor is flush mounted to the inner radius of the tube, using the block shown in the picture. A thermocouple is
also mounted flush with the wall (i.e., not protruding into the tube) across from the pressure sensor. The assembly is
shown uncapped (right) without the 50-ft coil attached. This configuration is referred to hereafter as the 2017 ITP.

Two other variable ITP configurations are also studied and will be referred to by their nominal outer diameter (OD)
herein. The first, labeled the 1/4-inch-OD assembly, uses the same kind of stainless-steel tubing, a similar transducer tee
(but does not allow for mounting of a thermocouple opposite the transducer), and same infinite coil as the 2017 ITP.
The sense line is straight and can be selected to be 12, 24, or 48 inch (0.3048, 0.6096, or 1.2192m) long. Figure 4
shows the 1/4-inch-OD ITP with the 12-inch sense line attached, but without the infinite line and pressure transducer
connected. The second variable configuration, referred to here as the 1/8-inch-OD assembly, uses a waveguide made of
stainless-steel tubing with a nominal OD of 1/8 inch. The nominal inner diameter is 0.055 inch (1.40mm), however.
Consequently, this represents a waveguide-diameter reduction by a factor of about 3.5 compared to the other two cases.
The sense-line lengths for this case are also 12, 24, or 24 inch. The attachable infinite coil is also 50 ft long and is always
capped at its end. Figure 5 shows the 1/8-inch-OD ITP connected to the infinite line, but without the sense line attached
and pressure transducer installed.
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Fig. 2 Closeup view of the termination plate with ITP (bottom), flush-mounted microphone (top) and pressure
transducer (center)

Fig. 3 ITP used in the 2017 DART Core/Combustor-Noise Baseline Test [9], with installed Kulite® (bottom
with white cable) and thermocouple (top)

Fig. 4 1/4-inch-OD ITP with 12 inch sense line, but without installed Kulite® and coil

A National InstrumentsTM NI-1082 chassis with a PXIe-4499 analog-to-digital conversion (ADC) card is used for
data acquisition. A Kulite® KSC-2 signal conditioner amplifies (but does not filter the Kulite® transducer signals). Data
are collected at a rate of 200 kHz. The source driver uses a stimulus provided by a Stanford Research Systems function
generator (DS360). The function generator produces a repeating 10 s logarithmic tone sweep from 500Hz to 3 kHz
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Fig. 5 1/8-inch-OD ITP connected to coil, but without 12 inch sense line and installed Kulite®

for a test duration of 240 s. For select test configurations, a sequence of single harmonics (roughly 1/3-octave-band
center frequencies between 500Hz and 3 kHz) are input, each with a 30 s sample duration, to verify the shape of the
transfer function produced with the logarithmic sweep. The time series produced by the ADC are then post-processed
using MATLAB scripts and routines. Cross- and auto-spectra are computed using the MATLAB function cpsd using a
segment length of 16,384 points (12.2 Hz frequency resolution) for sweep cases and 32,768 points (6.1 Hz frequency
resolution) for discrete-harmonic cases. The Hamming window and 50% segment overlap are used throughout.

The experimentally determined transfer function is then computed by dividing the cross-spectrum between the two
signals of interest by the auto-spectrum of the signal that is considered as the reference,

Hi j( f ) = Gi j( f )/Gii( f ) , (1)

where Hi j , Gi j , and Gii denote the (one-sided) transfer function, cross- and auto-spectrum, respectively for the signals
si(t) and sj(t), with t designating time; si is the reference signal and f is the frequency. Note that both the transfer
function and the cross-spectrum are complex quantities. In what follows, the microphone signal and the flush-mounted
and ITP-Kulite® signals are designated as s1(t), s2(t), and s3(t), respectively. Excellent agreement was always found
between sweep- and discrete-harmonic-determined transfer functions.

A. Typical Parameters During Testing
The atmospheric conditions in the room where the NIT is located were approximately standard atmospheric pressure

and 20 ◦C (68 ◦F) temperature during the testing. Table 1 shows the relevant physical properties and parameters
associated with the test. Using the values in Table 1, the shear-number parameter, see Eq. (A 3), for a given frequency

Table 1 Relevant Physical Properties and Parameters (SI)

ITP-line inner radius, 1/4 inch OD ro, m 2.4638×10−3

1/8 inch OD ro, m 6.985×10−4

mean temperature To, K 293.15
mean pressure po, kPa 101.325
mean density ρo, kg/m3 1.2041
gas constant R, J/kg K 287.058

specific heat at constant pressure cp , J/kg K 1004.9
ratio of specific heats γ 1.3999

adiabatic speed of sound co, m/s 343.21
mean impedance zo, kg/m2s 413.26
dynamic viscosity µ, kg/ms 1.8361×10−5

kinematic viscosity ν, m2/s 1.5249×10−5

Prandtl number σ 0.70858
shear number W

√
2π f r2

o/ν

frequency f , Hz 500–3,000

can then be evaluated through
W = 1.5815

√
f , (2a)
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for the assemblies using waveguides with nominal OD of 1/4 inch and

W = 0.4484
√

f (2b)

for nominal 1/8-inch OD cases. The square of the shear-number parameter represents the ratio of a diffusive time scale to
the time scale of the oscillation. For the frequency range in the NIT test, this means that the shear parameter, falls in the
range of about 35 to 87 for the 1/4-inch-OD cases and about 10 to 25 for the 1/8-inch-OD cases. The shear parameter W
can, hence, be considered as large in the testing, i.e. the motion in the line is dominated by inertia effects. Since a value
of W equal to ten can be considered as large, frequencies as low as 40Hz would actually fall in the large-shear-number
range for the 1/4-inch-OD assemblies.

III. Theory

Atransfer, or frequency response, function is used to relate the unsteady pressure at the actual location of interest
to the unsteady pressure measured at a remote location, using the ITP technique, when a direct measurement

is not possible. The transfer function H( f ), where f is the frequency, provides magnitude and phase relationships
between the desired and remote measurements. The magnitude change is given by |H( f )| and the phase lag is given by
φ = arg[H( f )]. The transfer function depends on the specific configuration details of the ITP. Iberall [12], Bergh and
Tijdeman [13], and Samuelson [14] developed the theoretical framework for ITP transfer functions. For convenience,a
the salient features and assumptions of basic ITP theory are summarized in Appendix A. The theoretical transfer
function for the type of ITP configurations used here are worked out in Appendix B by following the recursive procedure
introduced by Bergh [13].

The general result for the transfer function is given by Eq. (B 9). In this equation, Q = 1 if the line is capped, Q = −1
if the line is open, and Q = 0 if the line terminates into its own impedance (i.e., actually is infinite). VT is the (effective)
transducer volume. If the shear-number parameter, see Eq. (A 3), is large, this result can be further simplified. In this
case, Eq. (B 9) reduces to Eq. (B 10). Even though this limit turns out to be valid for the frequency range of interest here,
all computations are performed using Eq. (B 9) throughout this report.

A. Ideal Case
In what follows, the ideal case refers to the situation when the waveguide downstream of the transducer is infinitely

long and the effective transducer volume is neglible, i.e. Q = 0 and VT = 0. In this ideal case, Eq. (B 9) reduces to

H( f ) = e−HLS = e−χ( f )LS+iκ( f )LS , (3)

where H , χ, and κ are defined by Eqs. (A 7b) and (A 9) and LS is the sense-line length. Since the shear-number
parameter turns out to be large for the cases of interest here, physical insights can be gleaned by using the approximate
results in Eq. (A 20) instead. The leading-order magnitude and phase lag of the ideal transfer function are then given by

|H( f )| ≈ exp
[
−

2πLS f
√

2Wco

(
1 +

γ − 1
√
σ

)]
= exp

[
−

LS

ro

√
πν f /c2

o

(
1 +

γ − 1
√
σ

)]
(4a)

and
φ ≡ arg H ≈

2πLS

co
f , (4b)

respectively. The exponential magnitude reduction depends linearly on the ratio of the sense-line length to the waveguide
radius and the square root of the normalized frequency, or frequency paramter, F = ων/c2

o. The leading-order phase lag
simply reflects the well-known concept of signal flight-time delay. The most critical simplification used here, perhaps, is
the assumption of a negligible effective transducer volume which otherwise would cause an impedance change within
the tee.

B. Finite Waveguide
When the waveguide length, LI , downstream of the transducer location is finite, the general transfer function,

Eq. (B 9), will be dominated by resonance effects. To gain further insights for this case, it is instructive to neglect the
aThese early references used what can today be considered somewhat outdated and cumbersome notation
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transducer-volume effect, i.e. set VT = 0 in Eq. (B 9). The transfer function then reduces to

H( f ) =
e−HLS

(
1 +Q e−2HLI

)
1 +Q e−2H(LS+LI )

, Q , 0 , (5)

where the complex quantity H( f ) in general is given by Eq. (A 7b). Resonances occur when the denominator in
Eq. (5) nearly vanishes.b Using the large-shear-number result, Eq. (A 20), it follows that the resonance frequencies
approximately are given by

fn ≈
(n + 1

2 ) co
2(LS + LI )

, n = 0, 1, . . . , Q = 1 , (6a)

fn ≈
n co

2(LS + LI )
, n = 0, 1, . . . , Q = −1 , (6b)

for the terminated- and open-line cases, respectively.

C. Effective Transducer-Tee Volume
For a sufficiently long waveguide downstream of the transducer location, all waves reflected from its end point can

be neglected at the transducer location. In this case, the transfer function, Eq. (B 9), simplifies to

H( f ) = e−HLS

[
1 +

γVT
nT2πr2

oH

(
ω

co

)2 J0(α)

J2(α)

(
1 − e−2HLS

)]−1

≈ e−HLS

[
1 − i

γVT f
nT r2

oco

(
1 − e−2HLS

)]−1
, (7)

where the last member represents the leading-order result in the large-shear-number limit. Eqs. (A 9) and (A 20), rather
than Eq. (A 7b), should be used to evaluateH for the last member. Eq. (7) shows that the transfer-function magnitude,
for a nonzero value of VT , will exhibit undulations as the frequency is varied. As also pointed out in Appendix B,
VT f /πr2

oco is the ratio of the transducer volume to the volume in the line corresponding to one acoustic wavelength of
the perturbation motion and can be expected to be rather small for the cases studied in this report. However, it turns out
that it must be accounted for in the analysis.

Determining the effective transducer volume turns out to be a cumbersome task. First, the volume under the screen,
say VC , of a typical Kulite® pressure transducer can be estimated by using Eg. 7 of Hurst et al. [15] and the information
contained in their Figs. 10 and 11 for a XTE-190 transducer with standard B screen. It is believed that the geometrical
layout is sufficiently similar, if not identical, to the transducer used in the current work. This leads to the estimate of
VC = 3.50 × 10−8 m3 for the intrinsic transducer cavity volume. Second, the transducer is flush mounted to the inner
radius of the line. This means that there is an additional tee volume that needs to be accounted for. Furthermore, if there
is a thermocouple, its additional mounting volume needs to be included.

For the assemblies using the nominal 1/4-inch-OD lines, the additional mounting volume VM = 4.2 × 10−9 m3 for
the thermocouple design and VM = 2.6 × 10−9 m3 otherwise. Adding up the transducer-cavity and mounting volumes
gives the estimates VT = 3.92 × 10−8 m3 and VT = 3.76 × 10−8 m3 for the two 1/4-inch-OD cases with and without a
thermocouple tee design, respectively. However, it turns out that these estimates of the effective transducer volume are
too small to explain the observed undulations (see below) in the transfer-function magnitude. A modified approach is
therefore needed. It is quite conceivable that the line volume under the transducer tap, 2πr3

o, should be included in the
effective transducer volume.

For the nominal 1/4-inch-OD waveguides, the line volume under the tap is 0.9397 × 10−7 m3 and, consequently, VT
would typically be around 1.32 × 10−7 m3 when this volume is included. The procedure settled on is to start with this
estimated value for VT and then adjust it until a reasonable agreement between theory and experiment is acheived in a
certain frequency range, say 500–1,000Hz. No optimization procedure is used here, but could certainly be employed
for this purpose. An upwards adjustment of VT can be justified by the fact that the value of the polytropic expansion
coefficient 1 ≤ nT ≤ γ is not known. It is found that that the effective transducer volume VT = 1.5 × 10−7 m3 leads to
reasonable agreements. This value falls within the expected adjustment range of up to plus 40 percent. The theoretical
predictions presented in this report for the cases with nominal 1/4-inch-OD waveguides all use this value.

For the 1/8-inch-OD assemblies, line volume under the tap is 0.2141 × 10−8 m3 and the sum of this volume
and the intrinsic transducer volume is 3.71 × 10−8 m3. However, it is found that the larger than expected value of
VT = 9.0 × 10−8 m3 is needed to achieve reasonable agreements in this case.c

bThe denominator in Eq. (5) only vanishes to leading order in the large-W limit.
cThere is a funnel-shaped volume between the transducer face and the line yet to be accounted for however.
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IV. Results

Auto-spectra and transfer functions are presented for select ITP configurations, including cases with and without a
50-ft infinite coil attached as well as with differing sense-line lengths. For cases with the nominal 1/4-inch-OD coil

attached, the coil termination did not affect the results—indicating that the coil length can be considered as effectively
infinite—and only capped coil results are presented here. Based on the experience with the nominal 1/4-inch-OD coil,
only a capped termination is used for the nominal 1/8-inch-OD coil.

The first set of cases to be presented are results obtained using the 2017 ITP in three configurations, namely, uncapped
without the coil, capped without the coil, and with a capped coil. Figure 6 shows the (12.2Hz binwidth) auto-spectra,
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Fig. 6 Narrowband (12.2Hz) SPL levels measured by the three sensors for the 2017 ITP without a coil: (a)
open termination; (b) capped termination

in terms of the narrowband sound-pressure level (SPL), for the three sensors. That is, it shows 10 × log10(Gii/P2
re f )

for i = 1, 2, 3, with Pre f = 2 × 10−5 Pa. In both panels, the ITP is not connected to the infinite coil. Panel (a) and (b)
are for ITP configurations with an open and a capped termination of the short line downstream of the sensor location,
respectively. The black curves denote the microphone SPL and, on the scale used here, are masked by the blue curves
that represent the flush-mounted-Kulite® SPL. The red curves show the ITP-Kulite® SPL. As fully expected, both
panels clearly show the effects of reflections and resonances caused by the finite line length after the ITP-transducer
tee. The contrast in the ITP-Kulite® response between the two panels is caused by the different end conditions. The
undulation in the blue (and black) curves is caused by standing wave resonances inside the NIT. If the NIT had been
infinitely long, then the logarithmic-sweep would have led to a pink-noise-like spectrum (even though being fully
deterministic). Furthermore, the microphone signal generally will be used as the reference signal in what follows since
the NIT-interior measurements track exceptionally well in both cases shown here.

Figures 7 and 8 show the experimental and theoretical transfer functions between the NIT microphone and the
ITP transducer for the configurations analyzed in Fig. 6, i.e., the 2017 ITP without the infinite coil attached with open
and capped terminations, respectively. In these figures, panels (a) and (b) show the transfer-function magnitude and
phase lag, respectively. The red curves are the experimentally determined results. The dot-dash blue curves are the
theoretical predictions using Eq. (B 9), with an effective transducer-tee volume of VT = 1.5 × 10−7 m3. The transfer
function is actually dominated in these cases by the finite-length effects of the assembly and the assumed value of VT
has a negligible effect on the results here. The dashed black lines are the theoretical results for the ideal situation,
i.e., when the line after the transducer tee is infinitely (or sufficiently) long and the effective transducer volume VT is
neglected. The theoretical results track the experimental ones very well, with the exception of detectable magnitude
errors at resonant frequencies. However, these two configurations are, in some sense, extreme and would not be used in
practice. They are included in the present study only as a test of the theoretical-prediction capability of Eq. (B 9).

The second set of results is comprised of measurements obtained using several variable-sense-line-length, 1/4-inch-
OD waveguide, configurations. Figure 9 shows the (12.2Hz binwidth) narrowband sound-pressure level (SPL), for the
three sensors. In both panels, the ITP has a capped termination. Panel (a) and (b) are for ITP configurations without
and with the infinite coil attached, respectively. The microphone SPL (solid black) curves are again masked by the
flush-mounted-Kulite® SPL (solid blue) curves. The ITP-Kulite® SPL for a 12-inch sense line is shown using red lines

NASA/TM—2019-220045 7
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Fig. 7 Experimental and theoretical transfer functions for the uncapped 2017 ITP without coil: (a) magnitude
and (b) phase lag
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Fig. 8 Experimental and theoretical transfer functions for the capped 2017 ITP without coil: (a) magnitude
and (b) phase lag

in both panels. For 24-inch and 48-inch sense lines, the ITP-Kulite® SPL levels are shown using magenta and rusty-red
lines, respectively, in the right panel. The sense-line length is also indicated in the legends by the numbers 12, 24, and
48. As before, panel (a) clearly shows the effects of reflections and resonances caused by the finite line length after
the ITP-transducer tee. Panel (b) shows that, with the infinite-line coil attached, the ITP-Kulite® SPL clearly tracks
the SPL inside the NIT, but with an attenuation that increases as the frequency gets larger as well as with increasing
sense-line length.

Figure 10 shows the experimental and theoretical transfer functions between the NIT microphone and the ITP
transducer for the configuration analyzed in Fig. 9(a), i.e., the nominal 1/4-inch-OD ITP assembly with a 12-inch sense
line and a capped termination, but without the infinite coil attached. Panels (a) and (b) show the transfer-function
magnitude and phase lag, respectively. The red curves are the experimentally determined results. The dot-dashed
blue lines are the predictions based on Eq. (B 9), with VT = 1.5 × 10−7 m3. The dashed black lines are the idealized
theoretical results, i.e., when the line after the transducer tee has a perfectly matched termination (i.e. the line is infinitely
long) and the effective transducer volume is zero. Again, the theoretical results agree very well with the experimental
ones, except for some magnitude deviations at resonance frequencies.

Figure 11 shows the experimental and theoretical transfer functions between the NIT microphone and the ITP
transducer for the configuration analyzed in Fig. 9(b), i.e., the nominal 1/4-inch-OD ITP assembly with a capped infinite
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Fig. 9 Narrowband (12.2Hz) SPL levels measured by the three sensors for the nominal 1/4-inch-OD ITP
assembly: (a) capped, without coil—12-inch sense line; (b) capped, with coil—12-, 24-, and 48-inch sense line
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Fig. 10 Experimental and theoretical transfer functions for the capped ITP without coil: (a) magnitude and
(b) phase lag

coil attached for various values of the sense-line length. Panels (a) and (b) show the transfer-function magnitude and
phase lag, respectively. The red, magenta, and rusty-red curves are the experimentally determined results for 12-, 24-,
and 48-inch sense-line lengths, respectively. The dot-dashed blue, cyan, and blue-gray lines are the theoretical results,
Eq. (B 9), with VT = 1.5× 10−7 m3 for the sense-line lengths of 12, 24, and 48 inch, respectively. The dashed black lines
depict the ideal theoretical transfer-function behavior. The theoretical and experimental transfer-function-magnitude
results compare very well for frequencies up to about 1 kHz. Thereafter, the agreement increasingly deteriorates
as the frequency increases. This deviation is decreasing with increasing sense-line length however. The largest
magnitude deviation, observable in this figure, is estimated to be less than about 1 dB, which is rather close to reasonable
assumptions about measurement uncertainties in real-engine tests. The measured transfer-function phase lag is well
predicted by simply applying the leading-order time-of-flight correction.

The third set of measurements contains results for several variable-sense-line-length, 1/8-inch-OD waveguide
configurations. The ITP has the capped infinite coil attached in all assemblies. Figure 12 shows the (12.2Hz binwidth)
narrowband sound-pressure level (SPL) for the three sensors. The microphone SPL (solid black) curve is, as above,
masked by the flush-mounted-Kulite® SPL (solid blue) curve. The ITP-Kulite® SPL levels for 12-, 24-, and 48-inch
sense-line lengths are shown using red, magenta, and rusty-red lines, respectively. The ITP-Kulite® SPL levels clearly
track the SPL inside the NIT, but with an attenuation that increases as the frequency gets larger as well as with increasing
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Fig. 11 Experimental and theoretical transfer functions for the nominal 1/4-inch-OD ITP assembly with a
capped coil: (a) magnitude and (b) phase lag
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Fig. 12 Narrowband (12.2Hz) SPL levels measured by the three sensors for the nominal 1/8-inch-OD ITP
assembly with a capped coil and 12-, 24-, or 48-inch sense line

sense-line length. Both effects are more pronounced, as can be expected, compared to the corresponding 1/4-inch-OD
cases.

Figure 13 shows the experimental and theoretical transfer functions between the NIT microphone and the ITP
transducer corresponding to the configurations in Fig. 12, i.e., the 1/8-inch-OD ITP with a capped infinite coil attached
and various sense-line lengths. Panels (a) and (b) show the transfer-function magnitude and phase lag, respectively.
The red curves are the experimentally determined results for a 12-inch sense-line length; the magenta curves are the
experimentally determined results for a 24-inch sense-line length; and the rusty-red curves are the experimentally
determined results for the 48-inch sense-line length. The dot-dashed blue, cyan, and blue-gray lines are the theoretical
results, Eq. (B 9), with VT = 9.0 × 10−8 m3 for the corresponding sense-line lengths. The dashed black lines show
the ideal transfer-function behavior. The theoretical and experimental transfer-function-magnitude results compare
well for frequencies up to about 1 kHz. Thereafter, the agreement deteriorates—although there is a frequency range,
approximately 2.2–2.6 kHz, with again a reasonable agreement. The reason for later the region is not fully clear, but the
more complex undulations observed for these assemblies are most likely caused by a resonance due to an unintended
impedance change somewhere in the system. In contrast to the 1/4-inch-OD cases, the agreement in the 500-1,000Hz
frequency region is actually better for shorter sense lines. However, this could be another manifestation due to the
suspected unintended impedance change. The measured transfer-function phase lag is still relatively well predicted by
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Fig. 13 Experimental and theoretical transfer functions for the nominal 1/8-inch-OD ITP assembly with a
capped coil: (a) magnitude and (b) phase lag

simply applying the leading-order time-of-flight correction. However, the influence of the effective transducer volume
on the phase lag is more pronounced than in the previous set.

The undulations in both transfer-function magnitude and phase lag are the result of a standing wave pattern within
the ITP sense line due to reflections caused by impedance changes within the transducer tee. Using the determined
effective transducer volumes, it follows that at, say 1 kHz, the ratios of the transducer volume to the volume in the line
corresponding to one acoustic wavelength, VT f /πr2

oco, are 0.023 and 0.171 in the 1/4-inch-OD and 1/8-inch-OD cases,
respectively. Both values are small, but the latter is about one-order of magnitude larger than the former. Consequently,
the effects of the effective transducer volume should be stronger for the assembly with the smaller inner diameter, which
explains the reason behind some of the observed different behaviors.

V. Conclusions

The use of unsteady pressure transducers in an ITP arrangement allows measurements in the hostile environment
found for example in the core of gas-turbine engines, i.e., where the transducers themselves would not survive. In

order to extract accurate magnitude and phase information at the desired measurement location, a transfer function, that
relates the desired and actual measurements for the actual instrumentation layout, needs to be established and validated.

A transfer function was constructed using established procedures [13] and compared to select experimental results
obtained using a slightly modified NIT at NASA GRC. In general, the theoretical predictions compare very well with
the experimental data up to about 1 kHz, which covers the most relevant frequency range for turbofan core/combustor
noise. Consequently, the theoretical transfer function can be used to correct the measured unsteady-pressure data for
the ITPs studied here if the interest is limited to that frequency range. If higher frequencies are of interest, then it is
necessary to apply the slightly less efficient procedure of correcting the data using the measured transfer function.

The study also showed that the transducer/tee-volume effect plays a cruical role in the ITP physics leading to
undulations in the transfer-function magnitude and phase lag. These undulations become more pronounced as the
frequency is increased and as the waveguide (inner) diameter is reduced. Even though the transducer/tee-volume term
in the theoretical transfer function, at first glance, might appear not to be too significant, it needs to be included in
predictions. As is well known in many fields, even very small terms can have an observable impact at or near resonance
conditions as indeed is borne out here.

Additional conclusions to be drawn, or lessons to be learned, from the current work are: First, as large a diameter of
the ITP line as practical (matched to the transducer size) should be used. Not because this would lead to less attenuation
than for a thinner line, but because this would minimize the effects of the finite effective-transducer volume as well as
unintended imperfections in the implementation of the ITP design. Second, it is important to test, to the fullest extent
possible, each ITP for subtle imperfections, before installation in an engine or rig. Third, a good tee design is imperative,
particularly if higher frequencies are of interest.
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Appendices

A. Brief Summary of ITP Theory

This appendix gives a very brief summary of the basic concepts of infinite-tube-probe (ITP) acoustics. The main
references are the papers by Iberall [12], Bergh and Tijdeman [13], and Samuelson [14]. The major assumptions

for the theory are that the flow in the instrumentation tube is laminar and that the interior radius of the tube is small
compared to both the length of the sense line and the acoustic wavelengths. Furthermore, as in [12–14], there is no
purge flow in the ITP and only axisymmetric perturbations are considered.

1. General Solution
The unsteady fluctuations are assumed to be small enough such that they can be described by linearized versions of

the equations of continuity, momentum, energy, and state. In addition, since the diameter of the tube is very small
compared to any characteristic streamwise length scale, it turns out that the radial velocity component will be small
compared to the streamwise velocity component. It then also follows that the pressure fluctuation will depend only on
the streamwise coordinate x and time t, whereas the other unsteady quantities also depend on the radial coordinate r.
Consequently, using the usual normal-mode assumption for the perturbations, the dependent variables can be expressed
as

ρ = ρo + Real
[
ρ̂(x, r)e−iωt

]
, (A 1a)

p = po + Real
[
p̂(x)e−iωt

]
, (A 1b)

T = To + Real
[
θ̂(x, r)e−iωt

]
, (A 1c)

u = Real
[
û(x, r)e−iωt

]
î + Real

[
v̂(x, r)e−iωt

]
r̂ , (A 1d)

e = eo + cv(To)Real
[
θ̂(x, r)e−iωt

]
, (A 1e)

where ρ, p, T , u, and e denote density, pressure, temperature, velocity vector, and specific internal energy, respectively; î
and r̂ are the unit vectors in the streamwise and radial directions; cv(To) is the specific heat at constant volume evaluated
at temperature To; ω = 2π f is the angular frequency of the perturbation motion and f is the frequency. The mean-flow
variables, denoted by the subscript ’o’, are all constants.

It follows that the solution to the normal-mode form of the streamwise momentum equation, that is finite at the
origin and satisfies the no-slip condition on the tube wall, is given by

û(x, r) = −
i

ωρo

dp̂(x)
dx

[
1 −

J0(αr/ro)
J0(α)

]
, (A 2)

where Jm is the Bessel function of the first kind of order m, ro is the tube radius, α = eiπ/4W has been introduced for
notational convenience, and

W =
√
ωρor2

o/µ (A 3)

is a nondimensional parameter known as the shear number.d Its square represents the ratio of the inertia terms to the
viscous terms in the streamwise momentum balance. Put in another way, its square represents the ratio of the diffusive
time scale, ρor2

o/µ, to the time scale of the oscillation, 1/ω.
Multiplying Eq. (A 2) by the mean density ρo and integrating the result across the tube cross-sectional area produces

Û̂m(x) =
iπr2

o

ω

J2(α)

J0(α)

dp̂
dx

, (A 4)

where Ûm = Real
[
Û̂m exp(−iωt)

]
is the unsteady mass-flow rate.

Under the customary assumption that the heat capacity of the rigid wall is sufficiently large so that the temperature
fluctuations will be zero at the wall, it follows that the solution to the normal-mode form of the energy equation reads

θ̂(x, r) =
p̂(x)
ρocp

[
1 −

J0(α
′r/ro)

J0(α′)

]
, (A 5)

dIn contrast to, say Ref. 13, nondimensional parameters are strictly taken as real numbers here.
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where α′ = α
√
σ, with σ = µcp/λ being the Prandtl number; cp is the specific heat at constant pressure, µ is the

dynamic viscosity, and λ is the heat conductivity (all evaluated at To). The normal-mode form of the linearized equation
of state, i.e, the linearized ideal-gas law, then shows that the density perturbation is given by

ρ̂(x, r) =
p̂(x)
c2
o

[
1 + (γ − 1)

J0(α
′r/ro)

J0(α′)

]
, (A 6)

where co =
√
γRTo is the adiabatic speed of sound, γ = cp/cv is the ratio of specific heats and R is the gas constant.

Substituting Eqs. (A 2) and (A 6) into the normal-mode form of the continuity equation, integrating the resulting
equation with respect to the radial coordinate, and applying the condition that the normal velocity must vanish at the
outer wall shows that the normal-mode pressure must satisfy

d2 p̂
dx2 −H

2 p̂ = 0 , (A 7a)

where

H2 =

(
ω

co

)2 J0(α)

J2(α)

[
γ + (γ − 1)

J2(α
′)

J0(α′)

]
, (A 7b)

in order for the radial velocity perturbation to vanish at center axis of the tube. The implicit branch cut in Eq. (A 7b) is
taken along the negative real axis such that the real part of the complex parameterH is positive. Keeping causality in
mind, it follows that the general solution to Eq. (A 7) is

p̂(x) = A+ e−Hx + A− eHx = A+ e−χx+iκx + A− eχx−iκx , (A 8)

where A+ and A− are arbitrary constants (to be determined by streamwise boundary conditions) and

H = χ − iκ , (A 9)

where χ, the streamwise decay rate, and κ, the streamwise wave number, have been introduced. It is clear that the
first term in Eq. (A 8) represents a pressure disturbance that entered at an upstream location and is decaying in the
downstream location. The other term represents a reflected perturbation decaying in the upstream direction.

2. Transducer Model
The placement of a pressure transducer (or transducer tap) at a location, say x = xT , in the tube will lead to an

impedance discontinuity. Consequently, there will be a reflected wave generated at that location. The conditions to be
applied at x = xT are: (i) the fluctuating pressures upstream of, downstream of, and inside the transducer are the same;
and (ii) the unsteady mass-flow rate into the transducer equals the difference between the corresponding upstream and
downstream values. Furthermore, it is assumed here that there is no area change of the line at the transducer location.

It is usually assumed that the properties inside a transducer only depend on time. It is also assumed that the
compression process of the gas inside the transducer is polytropic, i.e. some heat exchange can take place with the
surroundings. In this case, the equation of state reads

pT ρ
−nT
T = constant , 1 ≤ nT ≤ γ , (A 10)

where pT and ρT denote the pressure and density in the transducer. If nT = 1 then the process is isothermal, i.e.,
sufficient heat exchange takes place for it to remain at constant temperature. If nT = γ, then the process is adiabatic.

By making the normal-mode assumption, i.e., ρT = ρo + Real
[
ρ̂T e−iωt

]
and pT = po + Real

[
p̂T e−iωt

]
, it follows

that the mass-flow rate into the transducer is given by

Û̂mT = −i
γω

nT c2
o

VT p̂(xT ) , (A 11)

where VT is the transducer volume and p̂(xT ) is the pressure normal-mode amplitude in the line at the transducer location
xT . Finally, conservation of mass then yields the transducer model[

dp̂
dx

] xT +
xT −

=
γVT

nT πr2
o

(
ω

co

)2 J0(α)

J2(α)
p̂(xT ) . (A 12)

The pressure is continuous across the transducer location, but there is a discontinuity in its slope given by Eq. (A 12).
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3. Small- and Large-Shear-Number Limits
Let’s first consider the limit of small shear numbers, i.e., it is assumed that W << 1. Since the Prandtl number is of

order unity, both |α | and |α′ | are then very small. For small values of its argument the Bessel function of the first kind
behaves as Jm(z) ≈ ( 12 z)m/m! [16]. It follows that

H ≈ (1 − i)
2ω√γ
coW

(A 13)

and that
û(x, r) ≈ −

1
4µ

dp̂
dx
(r2
o − r2) . (A 14)

the latter is simply a Poiseuille flow driven by the local (and instantaneous) pressure gradient. That is when the oscillation
is slow enough, the diffusive forces have enough time to penetrate the whole flow field. The unsteady mass-flow rate is
given by

Û̂m ≈ −
ρoπr4

o

8µ
dp̂
dx

, (A 15)

which can be obtained by taking the small-W limit of Eq. (A 4) or simply by integrating Eq. (A 14) across the tube area.
Second, let’s consider the opposite limit, i.e. the case when W >> 1. This is the limit that is of actual practical

importance for the situation considered in this report. Both |α | and |α′ | are then very large. Formula 9.2.5 (and
supporting formulas) in Abramowitz and Stegun [16] shows that the Bessel function of the first kind for large values of
its argument behaves as

Jm(z) ≈

√
2
πz

[
cos(z −

mπ
2
−
π

4
) −

4m2 − 1
8z

sin(z −
mπ
2
−
π

4
)

]
, | arg z | < π . (A 16)

Since argα = argα′ = π/4, It follows that

Jm(α) ≈

√
1

2πα

(
1 − i

4m2 − 1
8α

)
exp

[
−i

(
α −

mπ
2
−
π

4

)]
, (A 17)

with an identical formula involving α′. Hence, it follows that

J2(α)/J0(α) ≈ −

(
1 −

2i
α

)
as W →∞ , (A 18)

with an analogous formula when the argument is α′. Hence, for W >> 1,

H ≈ −i
(
ω

co

) [
1 +

i
α

(
1 +

γ − 1
√
σ

)]
, (A 19)

where the sign has been picked such that the real part is positive. Thus,

χ ≈
ω

√
2Wco

(
1 +

γ − 1
√
σ

)
, (A 20a)

κ ≈
ω

co

[
1 +

1
√

2W

(
1 +

γ − 1
√
σ

)]
≈
ω

co
. (A 20b)

Since the shear number W , is proportional to the square root of the angular frequency, Eq. (A 20a) shows that the
streamwise decay rate, χ, increases as the square root of the perturbation frequency. The perturbation essentially
propagates with its free-field wave number. If the first-order correction thereof is included, Eq. (A 20b) shows that there
is a small amount of dispersion, which probably can be ignored in many situations.

It also follows that
û(x, r) ≈ −

i
ρoω

dp̂(x)
dx

[
1 − exp(−e−i π4 η)

]
, (A 21a)

where
η = W(ro − r)/ro (A 21b)
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is a boundary-layer coordinate measured from the outer boundary and increasing towards the interior of the flow region.
Thus, in this limit, the incident and reflected perturbations propagate with the adiabatic speed of sound as unsteady plug
flows that are adjusted to zero at the solid wall through a thin boundary layer. The unsteady mass-flow rate is given by

Û̂m ≈ −
iπr2

o

ω

dp̂(x)
dx
+O(1/W) , (A 22)

which is either obtained by a large-W expansion of (A 4) or by directly integrating Eq. (A 21a) across the tube area.

B. Two-Segment-Probe Analysis

Atwo-segment line will be analyzed here using the recursive approach developed by Bergh and Tijdeman.[13] The
line has two equal-area segments of lengths L1 = LS and L2 = LI , respectively. In general, the infinite line is much

longer than the sense line, i.e., LI >> LS . The pressure transducer (or transducer tap) is located at the junction of these
segments, i.e., at x = xT = LS .

The solution (A 8) in the two segments can be written as

p̂(j)(xj) = A+j e
−Hx j + A−j e

Hx j , j = 1, 2 , (B 1)

where x1 = x and x2 = x − LS . Evaluating Eq. (B 1) at the entrance and exit of a segment, and then solving the resulting
equations, shows that, for j = 1, 2,

A+j =
p̂j−1eHL j − p̂j

2 sinh(HLj)
, (B 2a)

A−j =
p̂j − p̂j−1e−HL j

2 sinh(HLj)
, (B 2b)

where p̂j denotes the value of the pressure at the segment exit and p̂j−1 is the exit pressure of the previous segment, i.e.,
the inlet pressure of the current segment.

1. Second Segment
The second segment is the infinite-line part of the ITP. There are three boundary conditions at its exit that need to be

considered. First, the line can be capped at the end. Then the streamwise velocity must vanish at the end location, which
means that dp̂/dx = 0 for x2 = LI . Second, the line could be open at the end. In this case there is a pressure node at the
exit, i.e., p̂ = 0 for x2 = LI . Finally, the line could be terminated into its own impedance, which means that it is actually
infinite. These three situations can be described in terms of a reflection coefficient Q, by letting

A−2 = Q A+2 e
−2HLI , (B 3)

where Q = 0,±1 represent the infinite, capped, and open end conditions, respectively. It follows from Eqs. (B 1) and
(B 3), that

p̂1+ = A+2 + A−2 = A+2 (1 +Qe−2HLI ) , (B 4a)
dp̂1+
dx
= −H

(
A+2 − A−2

)
= −H A+2

(
1 −Qe−2HLI

)
. (B 4b)

2. First Segment
The transfer function p̂1/p̂0 can now be determined by considering the conditions on the pressure and its streamwise

derivative at the exit of the first segment. From Eq. (B 1), it follows that

p̂1− = A+1 e
−HLS + A−1 e

HLS , (B 5a)

dp̂1−
dx
= −H

(
A+1 e

−HLS − A−1 e
HLS

)
. (B 5b)

Combining Eqs. (B 4a) and (B 5a) produces

A+1 e
−HLS + A−1 e

HLS = A+2 (1 +Qe−2HLI ) . (B 6)
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Substituting Eqs. (B 4b) and (B 5b) into Eq. (A 12) yields

A+1 e
−HLS − A−1 e

HLS − A+2
(
1 −Qe−2HLI

)
=

γVT
nT πr2

oH

(
ω

co

)2 J0(α)

J2(α)
p̂1 . (B 7)

Combining these two equations produces

A+1 e
−HLSQe−2HLI

1 +Qe−2HLI
−

A−1 e
HLS

1 +Qe−2HLI
=

γVT
nT2πr2

oH

(
ω

co

)2 J0(α)

J2(α)
p̂1 . (B 8)

Substituting Eq. (B 2), for j = 1, into this result and rearranging terms, produces the following result for the transfer
function:

H( f ) ≡
p̂1
p̂0
= e−HLS

[
1 +Qe−2H(LS+LI )

1 +Qe−2HLI
+

γVT
nT2πr2

oH

(
ω

co

)2 J0(α)

J2(α)

(
1 − e−2HLS

)]−1

. (B 9)

Note that VT f /πr2
oco represents the ratio of the transducer volume to the volume in the line corresponding to the

acoustic wavelength of the perturbation motion and can be expected to be rather small for the cases studied in this report.
Since both γ/nT and |H |co/ω can be expected to be of order unity, one could be led to believe that the term involving
VT in Eq. (B 9) could be neglected without any significant loss of accuracy. However, this is only true for cases where
Q , 0 and LI has a finite value. For sufficiently long, or perfectly terminated, lines, the transducer volume, VT , needs to
be accounted for in predictions.

3. Large-Shear-Number Limit
Equation (B 9) is the general results for the ITP under consideration here. For large shear numbers, i.e. W >> 1, it

reduces to

H( f ) ≈ e−HLS

{
1 +Qe−2H(LS+LI )

1 +Qe−2HLI
− i

γVT
nT2πr2

o

(
ω

co

) [
1 +

1 + i
√

2W

(
1 −

γ − 1
√
σ

)] (
1 − e−2HLS

)}−1

, (B 10)

whereH is given by Eqs. (A 9) and (A 20). The large-shear-number result (B 10) further supports the importance of the
transducer-volume effects except under certain conditions.
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