SBG Applications: Water Resources and Agriculture Forrest Melton¹, Christopher Hain², Karl Rittger³, Stephanie Uz⁴, Catalina Oaida⁵, Kat Bormann⁵, Savannah Cooley⁵, Chris Crawford⁶ Christine Lee⁵, Natasha Stavros⁵, Jeff Luvall², Nancy Glenn⁶ ¹NASA Ames Research Center - CREST, ²NASA Marshall Space Flight Center, ³ National Snow and Ice Data Center (NSIDC) and CU Boulder, ⁴NASA Goddard Space Flight Center, ⁵Jet Propulsion Laboratory, California Institute of Technology, ⁶ U.S. Geological Survey, ⁷Boise State University affect ecosystems and the services these provide? H-1: How is the water cycle changing? Are changes in ET and precip accelerating, with greater rates of ET and precip, and how are these changes expressed in the space-time distribution of rainfall, snowfall, ET, frequency of extremes, such as floods and droughts? H-2: How do anthropogenic changes in climate, land use, water use, and water storage interact and modify the water and energy cycles locally, regionally, globally, and what are the short and long term consequences? H-3: How do changes in the water cycle impact local and regional freshwater availability, alter biotic life of streams, and H-4: How does the water cycle interact with other Earth system processes to change the predictability and impacts of hazardous events and hazard chains (eg, floods, wildfires, landslides, coastal loss, subsidence, droughts, human health, ecosystem health) and how do we improve preparedness and mitigation of water-related extreme events? Agriculture – ECOSTRESS evapotranspiration, crop condition/class/properties for improved ag and irrigation practices and drought mgmt ## **Applying Snow Data** Societal Challenge: water availability and management continues to be one of the greatest risks we face, particularly as it relates to food insecurity and responding / adapting to weather extremes (droughts and floods) **Opportunity:** Optimizing reservoir operations for water supply, flood protection, and hydropower production requires accurate predictions of runoff at different lead prediction of snowmelt and streamflow for improved operations. Example from NASA Western Water Applications Office, with Airborne Snow Observatory Team ## Societal Challenge: water availability and management continues to be one of the greatest risks we face, particularly as it relates to food insecurity and responding / adapting to weather extremes (droughts and floods) Opportunity: improved detection and characterization of key freshwater sources and the single largest use of freshwater (agriculture) could improve our ability to address and mitigate effects of drought, especially rapid onset droughts and their impacts on agricultural systems Decision relevant information from SBG: TIR and SWIR data are necessary for high-resolution impacts of drought and vegetation stress on agricultural Estimated Crop Yield from Field-**Growing Season ET** Scale Indicators | DS Question | Focused Science Topic | Application Concept | Decision Approach | L2+ VSWIR (one row) and TIR (another row) | Spatial | Temporal | Latency | Other Design Considerations | End Users | Ancillary | Additional Comments | |---|--|---|--|---|--|--|---|---|---|---|---| | H-2. How do anthropogenic changes in
climate, land use, water use, and water
storage, interact and modify the water
and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Ecosystem traits and biodiversity - terrestrial | Improve agricultural practices (not related to water resources) | Use crop composition, structure, health to optimize application of fertilizers and reduce nutrient runoff. | L3-Crop Type L3-Vegetation Traits L3-Dead/Dormant Vegetation Maps L3-Green Vegetation and Non- photosynthetic vegetation L2-Surface Reflectance L4-Water Use Efficiency | 30m x 30m (field
scale) | weekly to monthly
(based on cycles for
imigation and
fertilizers?) | < 1 week | sun-synchronous | US Department of Agriculture NASS, ARS, FAS Water Districts Private agricultural businesses, like Gallo, Monsanto, John Deere ALL Federal Land Managers; Conservation NGOs; State Land Managers; Private land managing Industries (forestry, etc.) US Fish and Wildlife, | lidar and / or radar for vegetation structure | need category for federal agencies, perhaps
broken into land managers vs. regulators, etc. | | | | | | L4-Evaporative Stress Index
L3-Evapotranspiration
L2-Land Surface Temperature | 3 | | | | AgriFood Canada, USGS FEWSNET,
GEOGLAM | ECOSTRESS ancillary | | | 그러가 있었는 가능한 경기 교육 사람들은 아이들에게 되었다면 하는 것이 되었다면 하는 것이 되었다면 하는데 | Ecosystem traits and
biodiversity - terrestrial | Improve agricultural practices (not related to water resources) | Use crop composition, structure, health to improve detection of crops that are diseased. May inform treatment of pest / disease mitigation. | L3-Crop Type L3-Vegetation Traits L3-Dead/Dormant Vegetation Maps L3-Green Vegetation and Non- photosynthetic vegetation L2-Surface Reflectance L4-Water Use Efficiency | 30m x 30m (field
scale) | weekly to monthly
(based on cycles for
irrigation and
fertilizers?) | < 1 week | sun-synchronous | US Department of Agriculture NASS, ARS, FAS Water Districts Private agricultural businesses, like Gallo, Monsanto, John Deere ALL Federal Land Managers; Conservation NGOs; State Land Managers; Private land managing Industries (forestry, etc.) US Fish and Wildlife, AgriFood Canada, USGS FEWSNET, GEOGLAM | lidar and / or radar for vegetation structure | need category for federal agencies, perhaps
broken into land managers vs. regulators, etc. | | | | | | L4-Evaporative Stress Index
L3-Evapotranspiration
L2-Land Surface Temperature | | | | | | ECOSTRESS ancillary | | | and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Ecosystem traits and | Improve agricultural practices (not related to water resources) | Use crop composition, structure, health to support management of shrublands / shrub steppe habitats. | L3-Crop Type L3-Vegetation Traits L3-Dead/Dormant Vegetation Maps L3-Green Vegetation and Non- photosynthetic vegetation L2-Surface Reflectance L4-Water Use Efficiency | 30m x 30m (field
scale) | | | sun-synchronous | US Department of Agriculture NASS, ARS, FAS Water Districts Private agricultural businesses, like Gallo, Monsanto, John Deere ALL Federal Land Managers; Conservation NGOs; State Land Managers; Private land managing Industries (forestry, etc.) US Fish and Wildlife, | lidar and / or radar for vegetation structure | need category for federal agencies, perhaps
broken into land managers vs. regulators, etc. | | | | | | L4-Evaporative Stress Index
L3-Evapotranspiration
L2-Land Surface Temperature | | | | | AgriFood Canada, USGS FEWSNET,
GEOGLAM | ECOSTRESS ancillary | 2 | | H-1. How is the water cycle changing?
Are changes in evapotranspiration and
precipitation accelerating, with greater
rates of evapotranspiration and thereby
precipitation, and how are these
changes expressed in the space-time
distribution of rainfall, snowfall,
evapotranspiration, and the frequency
and magnitude of extremes such as | | Improving estimates of
streamflow volumes and
timing for water resources
management, flood control,
ecosystem flows, and
hydropower | Apply snow properites products in
streamflow estimates provided by
operational agencies to inform water
allocation, flood control,
hydropower, and water use. | | 8 | albedo and
reflectance-daily
(ideal), swe and snow
density-daily | | | Western States Water Council
State Water Agencies (in areas where snow is
major water supply)
NOAA (responsible for hydroforecasts) | Lidar snow depth | | | droughts and floods? H-1. How is the water cycle changing? | | | | L2-Land Surface Temperature | 30m x 30m | sub-daily, diumal | daily or less | | | | | | Are changes in evapotranspiration and precipitation accelerating, with greater rates of evapotranspiration and thereby precipitation, and how are these changes expressed in the space-time distribution of rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes such as droughts and floods? | | Improving mountain-derived runoff in snowmelt driven regions (e.g. Western US, Himalayas) where dust and black carbon (BC) deposition in snow alters runoff volume and timing. Implications to water resources management, | | L4-Albedo
L4-Snow Water Equivalent
L4-Snow Density
L4-Snow Grain Size
L4-Light Absorbing Impurities | | daily - 3 days | | | same as above (WSWC, State water agencies in western US) but also interenationally, e.g. Himalaya region | Lidar snow depth | Select references: Painter et al., 2010 Painter et al., 2007; Flanner et al., 2007; Qian et al, 2009; Oaida et al., 2015; Belnap et al., 2009; Flanner and Zender, 2007; Li et al., 2013; | | | | flood control, ecosystems,
hydropower. | | L3-Evapotranspiration
L2-Land Surface
L2-Land Surface Emissivity | | | | | | | | | (H-2) Impact of Land Use Changes on
Water and Energy Cycles. How do
anthropogenic changes in climate, land
use, water use, and water storage
interact and modify the water and
energy cycles locally, regionally and | Snow Monitoring Natural | As above, but with further implications during extended droughts. Improve understanding of how droughts affect dust sources and BC from wildfires, and how those changes might | | L4-Albedo L4-Snow Water Equivalent L4-Snow Density L4-Snow Grain Size L4-Light Absorbing Impurities L3-Evapotranspiration | 1 m - 50 m | 3 -16 days | | | National Forest Service, Bureau of
Reclamation, National Park Service | Lidar snow depth | Select references: Painter et al., 2010; Painter et al., 2007; Flanner et al., 2007; Qian et al, 2009; Oaida et al., 2015; Westerling et al., 2006; Neff et al., 2008; Belnap et al., 2009; | | globally and what are the short- and
long-term consequences? | | further impact dust/BC in
snow effects on mountain
Improving drought/flood | | L2-Land surface temperature | · | | | | | · | | | [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] | /
Extremes (drought,
flooding) predition | events by incorporating role
land and land-ocean-
atmosphere interactions
play in drought/flooding
extremes, in forecasting
models. Changes in regional
scale snowpack, subsoil and
soil temperature have been
shown to contribute to
flood/drough extreme
events downstream, through
interactions with
atmosphere, dynamic
processes. | Incoroporate snow (amount) and surface temperature data (and processes) in regional forecasts for extreme events like drough/flooding. | L4-Albedo
L4-Snow Water Equivalent
L4-Snow Depth | | 8 - 16 days | | | NOAA (climate prediction center), National
Weather Service, | | Select references: Xue et al., 2016: Spring land temperature anomalies in northwestern U.S. and the summer drought over Southern Plains and adjacent areas. Xue et al, 2018: Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream Late Spring-Summer Droughts/Floods in North America and East Asia | | | | | | L3-Evapotranspiration L3-Land Sub-surface Temperature L2-Land Surface Temperature L2-Land Surface Emissivity | | | | | | | | | H-2. How do anthropogenic changes in
climate, land use, water use, and water
storage, interact and modify the water
and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Land Surface Fluxes | Improving estimates of consumptive water use in agriculture, rangelands, and other managed landscapes for purposes of improving efficiency in irrigation, water use accounting, water rights administration and water allocations. | Develop and apply improved ET products in estimates of water demand to improve water management and allocations, important for responding to drought | L4-Dead/Dormant Vegetation Maps L4-Gross Primary Productivity L4-Irrigated area maps L3-Green Vegetation and Non- photosynthetic vegetation L3-Evapotranspiration (L3) L2-Surface Reflectance L2-NDVI | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | Daily (ideal), 3-5 days | 1-2 days for
agricultural
applications, 4-8
days for other
applications,
monthly - water
rights | Improving temporal resolution higher priority than spatial (with min at 100m). For ET, need coicident VSWIR and TIR measurements every 8 days, with desired higher temporal revisit for thermal. For LST, need 3-5 bands. | Local, state, federal water management
agencies, agricultural companies, ag tech
companies, NGOs | | Comment on Kerry / ECOSTRESS 5->3 bands and LST accuracy | | | | | | L2-Land Surface Temperature
L2-Land Surface Emissivity | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | | | | | | | | H-2. How do anthropogenic changes in
climate, land use, water use, and water
storage, interact and modify the water
and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Land Surface Fluxes | Improving estimates of evapotranspiration from wetlands and riparian ecosystems to monitor water demands for wetland and riparian ecosystems, improve accurate accounting of consumptive use by in water limited regions, and identify habitat | Apply improved ET products in estimates of water demand to improve water accounting and ensure adequate instream flows for wetland and riparian ecosystems. | L4-Irrigated Area Maps L3-Green Vegetation and Non- photosynthetic vegetation L3-Evapotranspiration L2-Surface Reflectance L2-NDVI | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | Daily (ideal), 3-5 days
(acceptable), < = 8
days (minimum) | 8-16 days | | Federal, state and local water management agencies, NGOs | | | | | | | | L2-Land Surface Temperature
L2-Land Surface Emissivity | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | | | | | | | | H-2. How do anthropogenic changes in
climate, land use, water use, and water
storage, interact and modify the water
and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Land Surface Fluxes | Improving estimates of consumptive water use in agriculture for imigation scheduling. | Apply improved ET products in estimates of water demand / crop consumptive use to support advances in irrigation scheduling and on-farm water use efficiency. | L4-Irrigated Area Maps L3-Green Vegetation and Non- photosynthetic vegetation L3-Evapotranspiration L2-Surface Reflectance L2-NDVI | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | Daily (ideal), 3-5 days
(acceptable), < = 8
days (minimum) | 1 | | Agriculural companies, ag extension agencies and farm advisors, ag tech companies | | | | | | CSPAE | and our latter deb enroleticy. | L2-Land Surface Temperature
L2-Land Surface Emissivity | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | | | | | | | | H-2. How do anthropogenic changes in
climate, land use, water use, and water
storage, interact and modify the water
and energy cycles locally, regionally
and globally and what are the short-
and long-term consequences? | Land Surface Fluxes | Improving estimates of
consumptive water use in
agriculture to facilitate
development of water
markets. | Apply improved ET products in estimates of water demand / crop consumptive use to support development of incentive-based conservation programs and water trading programs to enhance sustainability of water supplies and long-term viability of agriculture in water limited regions. | L4-Irrigated Area Maps L3-Green Vegetation and Non- photosynthetic vegetation L3-Evapotranspiration L2-Surface Reflectance L2-NDVI | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | Daily (ideal), 3-5 days
(acceptable), < = 8
days (minimum) | | | Agriculural companies, state and local water management agencies, NGOs | | | | | | | | L2-Land Surface Temperature
L2-Land Surface Emissivity | 30m (ideal), 50m
(acceptable), 100 m
(minimum) | | | | | | | Comments: