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Outline

. Mind map of the problem (and solutions!)

. Four examples of progress
- Hot plasma observation
- Time lag maps
« Pulsing Loops
- Footpoint evolution
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Coronal heating theories

7N

Footpoint Stressing (DC)

Wave Dissipation Models (AC)

Taylor Relaxation Models

Y.

Turbulence Models

Model description | Efficiency (£) | Example reference
Wave Dissipation (AC) Models
Alfvén-wave collisional damping AlE2Re 1 Osterbrock (1961)
Resonant absorption Alel! Ruderman et al. (1997)
Phase mixing Ale4/3Re—1/3 Roberts (2000)
Surface-wave damping A1/283/2(%/Re)1/2 Hollweg (1985)
Fast-mode shock train AZe3 Hollweg (1985)
Switch-on MHD shock train A3el Hollweg (1985)
Turbulence Models
Kolmogorov-Obukhov cascade Ale2 Hollweg (1986)
Iroshnikov-Kraichnan cascade AZe3 Chae et al. (2002)

Hybrid triple-correlation cascade
Reflection-driven cascade

Ale3(1+0)1
ATO2(F2 - + 12 f1)

Zhou & Matthaeus (1990)
Hossain et al. (1995)

2D boundary-driven cascade A2/3gl1/3 Heyvaerts & Priest (1992)
Line-tied reduced MHD cascade Alel/2 Dmitruk & Gomez (1999)
Footpoint Stressing (DC) Models
Current-layer random walk Al Sturrock & Uchida (1981)
Current-layer shearing A1+ 021/ 2(1 + A2~ 1/2 Galsgaard & Nordlund (1996)
Braided discontinuities A2e! Parker (1983)

Flux cancellation

Al@l{q'}ﬂ,-‘ﬂ _ q".r‘ifr‘?'}

Priest et al. (2018)

Taylor Relaxation Models

Tearing-mode reconnection
Hyperdiffusive reconnection
Non-ideal/slipping reconnection

Ale (1 — aL)~5/?
Ate—1(aL)?
0~ 1(aL)!

Browning & Priest (1986)
van Ballegooijen & Cranmer (2008)
Yang et al. (2018)

Cranmer and Winebarger, 2019, ARAA, 57:1-30

Observations
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Turbulence Models

Cirtain, et al., 2013, Nature, 493, 501
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Coronal heating theories
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Coronal heating theories
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broadenings,
May include ionization non-equilibrium Wave motions w3 doppler shifts,
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Temperature - 14
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Footpoint Stressing (DC) Ignores magnetic field
(except for
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Take away from mind map

* Progress is happening, but it is “random walk” instead of linear.

* The link between different simulations needs improvement.



The rest of this talk

* Highlight recent work on plasma simulations and observations
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The rest of this talk

* Highlight recent work on plasma simulations and observations

Spatial Location

>

Random/uniform

Footpoints

High Frequency Low
frequency Frequency

Is this true?

AC heating is based on
MHD simulations

DC heating based on
interpretations of
stressing models.



The rest of this talk

* Highlight recent work on plasma simulations and observations

Spatial Location

>

Random/uniform

Footpoints

High Frequency Low
frequency Frequency

For plasma response,
we define frequency
relative to cooling
time.

This is NOT a
fundamental timescale
for stressing.



High Temperature Plasma — the “smoking
gun” for Nanoflare heating?

. At some point (maybe at an early Loops?) it was noted that high
temperature plasma was an indicator of low frequency heating.
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Hunt for high temperature plasma — Early

results

§ RHESSI
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s |
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Schmelz et al 2009, 704, 863

1wl o _.%

e Reale et al 2009, ApJ°9T7<O4 158"

Early results focusing on hard and
soft X-ray observations.

Rely on the cross calibration of the
two instruments.




High Temperature Plasma — the “smoking

gun” for Nanoflare heating?

Low frequency

iod
‘.}I P

3 t:-:.l'i._‘_.&oc:nng

og DEM (cm " K

Klimchuk 2017

High frequency
_‘I-'_':'-Um_ -
Time

Assume a coherent loop is a
collection of strands
Assume strands in loop are
heated similarly

Low-frequency heating — broad
DEM with lots of low and cool
plasma

High frequency heating — narrow
DEM.



Statistical Survey using EIS and AlA
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Warren et al used AIA Fe XVIII channel to expand
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the temperature sensitivity.
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Warren et al 2012, ApJ, 759, 141



Emission Measure (cm ™) Emission Measure (em ™)
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Statistical Survey using EIS and AlA
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Parameterized the resulting EM as a broken VD S 701 2,00], 750
power law with slopes alpha and beta.



Statistical Survey using EIS and AlA

Found relationship
between EM and
magnetic flux.

Found beta was ~10 In
all cases.

Large uncertainty due
to limited high
temperature sensitivity

10[

Power-Law Index

[ EM Power Law Index « (6.0-6.6)

100

10

Power-Law Index

EM Power Law Index |} (6.6-7.0)

opg O o® BobB

?

pe=
Total Uﬂié-llgﬂﬂd Flux (Mx)

Warren et al 2012, ApJ, 759, 141
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SUMER and EIS

SUMER and EIS were combined
to study thermal structure of an off
limb active region

Beta between 8.5 -4.5
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>
—400
950 1000 1050 950 1000 1050
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Parenti et al 2017, ApJ, 846, 25



Recent results — FOXSI sounding rockets

1028 . ——
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o log T
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Temperature [MK]
Ishikawa et al, 2017, Nature Astronomy, 1, 771 Athiray et al (2019, to be submitted)

Recent FOXSI results measure slope with a combination of
XRT, AIA and FOXSI.
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AlA94 A XRT Al-mesh

AIA 131 A XRT Ti-poly

AIA 171 A XRT Al-thick

AJA193 A RHESSI 3.5-4.5 keV
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Summary of Beta

Warren et al. 2012 10+- 3
Parenti et al 2017 45-8.5
Ishikawa et al 2017 12
Athiray et al (submitted) 6

Ishikawa & Krucker 2019 8



In a parallel effort...

Series of papers investigated the relationship between heating
frequency and temperature diagnostics.

Bradshaw et al, 2012, ApJ, 783, 53
Reep et al., 2013, ApJ, 784, 193

. Cargill, 2014, ApJ, 784, 49
Barnes et al, 2016, ApJ, 829, 31
Barnes et al. 2016, ApJ, 833, 217
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Barnes et al. considered different heating
frequencies (regular and random) and different
vehicles for heating (ions and electrons).
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Included non-equilibrium ionization.

Barnes et al, 2016, ApJ, 833, 217




Maybe Beta isn’t a great parameter?
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Barnes (private communication)




EM slope

Maybe Beta isn’t a great parameter?

log.Th, max
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The measured beta

depends strongly
on the selected
bounds.

10° 10’

Barnes et al, 2016, ApJ, 833, 217



Results from Simulations

6.6 <logT1 <6.9
6.6 <logT <7.0
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Betas that have been recently
measured (~10) indicate high
frequency heating.

This is only for one loop length —

80 Mm.

Barnes (private communication)
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from Simulations

Betas that have been recently
measured (~10) indicate high
frequency heating.

This is only for one loop length —

80 Mm.

Barnes (private communication)



Results from Simulations
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Barnes suggested that line ratios may
be a better diagnostic tool than beta. Barnes et al, 2016, ApJ, 833, 217



Coronal heating theories
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Fe XIX pervasive in Active Region

EUNIS sounding rocket
experiment observed pervasive Fe
XIX emission in a non-flaring
Active Region.

Determined this was consistent
with nanoflare heating.

Determined ratio of Fe XIX to Fe
XIl inside and outside the Active
Region Core.
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Upcoming Instrument - MaGIXS

| 1.09m i 0.75m _, 0.75m |
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T — Optical Path \
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slit i Detector
\ I
Wolter-1 Telescope (Telescope Focal Plane) SM1  SM2 Planar VLS P A

Grating

Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding

rocket instrument.
Spatially and spectrally resolve 6-25 Ang wavelength range (Fe XVII, Fe

XVIII, Fe XIX)



Upcoming Instrument - MaGIXS

FOXSI-2 MaGIXS SDO/AIA Hinode/XRT
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Upcoming Instrument - MaGIXS

MaGIXS build it currently underway at MSFC! To be flown in 2020.



Coronal heating theories
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Tentative Link to Coronal Heating Theories
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Dissipation of Alfven Waves

Series of papers that consider how Alfven waves might be dissipated to heat
the corona.

In these papers, they predict the energy release as a function of space and
time.
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Tentative Link to Coronal Heating Theories
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335-211A

Intermediate Frequency Train High Frequency Train

Control Model

Time lags

Bradshaw & Viall used ebtel to
model time lag maps.

335-171A

Intermediate Frequency Train

Determined intermediate or low
frequency heating best matched Control Model
observations.
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Tentative Link to Coronal Heating Theories
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Short-lived, small-scale brightenings in the
MOosS

Hi-C revealed short lived
brightenings at the footpoints
of high temperature loops.
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Observations supporting infrequent heating

Title: Evidence of Non-Thermal Particles in Coronal Loops Heated
Impulsively by Nanoflares

Authors: P. Testa'®, B. De Pontieu??, J. Allred*, M. Carlsson?, F. Reale®, A. Daw?, V.
Hansteen?, J. Martinez-Sykora8, W. Liu?7, E.E. DeLuca’, L. Golub', S. McKillop', K.
leeves’, S. Saar', H. Tian', J. Lemen2, A. Title2, P. Boerner?, N. Hurlburt2, T.D. Tarbell2,
J.P. Wuelser?, L. Kleint?8, C. Kankelborg?, S. Jaeggli®
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Tentative Link to Coronal Heating Theories

There is strong observational evidence for heating on multiple
frequencies at multiple spatial locations.
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Conclusions

We are “hopscotching” our way toward constraining the coronal
heating mechanism

As instruments improve, so must the fidelity of the simulations
We have made a lot of progress. There is still a long way to go!

There needs to be better connection between the theoretical
simulations and simulations of plasma response to heating.
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High temperature “blind spot” in Hinode
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Upcoming Instrument - MaGIXS
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With MaGIXS measure Beta with better precision, a smaller spatial

resolution and better “cross calibration.”
Athiray et al, 2019, to be submitted
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