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Typical System Needs and Challenges in Aeronautics and Space 

• System Challenges in Space

– Efficiency (mass and volume reduction) 

– Degradation in harsh space environments

• Needs

– Lightweight materials and structures

– Materials and structures that can perform reliably 
in extreme environments

– Multi-functionality

• Radiation protection

• Impact resistant

• Smart materials

• System Challenges in Aeronautics

– Efficiency (power, cost)

– Mass, noise, emissions reduction

• Needs

– Higher strength and stiffness 
lightweight composites

– High temperature, toughened 
composites

– Thermal management

– Multi-functionality

• Morphing structures

• Electrically conductive composites

Min, J., Williams, T. et al, AIAA 2016-1501
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Novel Electrical Insulation
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Polymeric Materials for High Power Density Electric Motors
• Benefits:

– Fuel Savings

– Noise Reduction

– Carbon and NOx Reduction

• Electrical Insulation Development
• System need: Better thermal management for MW class, 

high power density (>13 kW/kg) electric machines

• Thermally conductive electrical insulation necessary to 
optimize engine performance in hybrid electric motors

• Thermal conductivity of most electrical insulators: ~0.1 –
0.2 W/mK

• Goal: ~1 W/mK thermal conductivity

• System challenges

• Pre-mature electrical insulation failure due to excessive 
heating and corona discharge

• Higher operating voltages, temperatures, and frequencies

Lightweight power 
transmission system

X-57 Maxwell all-electric
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Thermally Conductive Electrical Insulation

Dry spots

Breakdown voltage 
decreased by as much as 
61% after large volume of 
additives were mixed 
with polymer 

• Thermally Conductive, Electrical Insulation Needed
• Copper wire

• Slot liner

• Potting material

• Incorporate conductive fillers to increase thermal 
conductivity of polymer insulation

• Adding dissimilar materials typically negatively impact 
insulation performance
– Lower dielectric strength

– Higher chances of charge build up

– Decreased flexibility

– More interfacial polarization

• Grains and grain boundaries
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Twin Screw Extrusion to Develop Thermally Conductive Electrical Insulation 

• Advantages

– Improved polymer orientation

– Better filler dispersion and distribution

– Preferred filler directionality and alignment

– Capable of extruding large volumes of thin films and wire coating

• Process parameters 

– Nanofillers? Micro-fillers? Nano/ micro- fillers?

– Effect of particle concentration

– Effect of filler material

• BN

• Mica

– Effect of filler geometry

• Sheets/platelets

• Particles

• Strand extrusion can be used for additive manufacturing

High temperature extruder

Extruded wire coating
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Characterizing Novel Electrical Insulation Candidates for Electric Machines

• Dielectric Analysis (DEA): Correlates chemical structure and end-use performance

– Thermal analysis tool traditionally used in manufacturing to optimize processing conditions and reduce scrap

– Provides information about dipole orientation and molecular relaxations, magnitude of conductivity, and magnitude of 
energy loss

• Electrical properties + molecular activity  better understanding of thermo-electrical properties and 
chemistry to help design better insulation materials
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DEA: Performance Prediction of Novel Electrical Insulation Candidates
• What can DEA data tell us?

• Influence of crystallinity 

• Cure-related information (kinetics, rheology)

• Frequency and temperature-dependent changes

• Changes in electrical properties due to environmental exposure (thermal breakdown, defects, moisture)

• Information Pertinent to Insulation Performance

• εʹ (relative permittivity)

• ε ʺ

• tan δ

• Ionic conductivity

• ε * (complex permittivity)

No applied field ----< 1----<--~1---· 
• · • · • • -------------------------<-~----•~<~~-----

• • • --------(£,-------.... 
Applied field 

Pinduced = aE 
Induced dipole moment= polarizability x electric field 
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DEA: Moisture and Thermal Effects on Dielectric Properties in Polyimide (PI)

Mass loss due to water loss 

indiscernible in TGA 
• Water uptake in submerged 

polyimide was ~2.1 wt%
according to mass measurements

• Three commercial polyimide films 
investigated: (1) As received (AR); (2) 
Oven-dried; (3) Submerged in water

More 
polarizability in 
water submerged 
samples

Kapton

Frequency: 4 kHz AR PI Permittivity

Dry PI Permittivity

Submerged PI Permittivity

AR PI Ionic Conductivity

Dry PI Ionic Conductivity

Submerged PI Ionic Conductivity

Frequency Sweeps

‡Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.
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DEA: Thermal Aging Effects on Dielectric Properties

Insulation Materials / Advanced Air Transport Technology Project / Advanced Air Vehicles Program 10

As-received PI film

Aged at 275°C (530°F) for 190 hours

• Thermal aging carried out to evaluate changes in chemical 
structure at potential operating temperatures

• Frequency sweeps on DEA performed at ambient temperature

• Polyimide Tg = ~381°C

Relative permittivity decrease suggests more 
rigid network formation during aging
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Self-healable Electrical Insulation
• Challenge: Polymeric aircraft electrical insulation is highly prone to damage by:

– Corona discharge at altitude 

– Abrasion and cuts (maintenance)

– Damage to electrical insulation leads to electrical shorts and/or fires

• Need: Increase aircraft safety and longevity of electrical insulation over state-of-the-art insulation 
through self-healing

• State-of-the-Art Insulation:  Polyimides

• Advantages

• Low dielectric constant and high dielectric breakdown voltage

• High thermal stability

• Disadvantages

• Moisture absorbance  Electrical fires

11

Micro-cracks in polyimide 
after dielectric failure
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Typical Self-healing Mechanisms in Polymers

12

Extrinsic Healing Intrinsic “Reversible” Healing

Embedded microcapsules filled with healing
agents that flow and polymerize when cracks
are formed.

Microvascular networks filled with healing agents
that flow and polymerize when cracks are formed.

Ionic clusters and other bonds that can
break and reform

The number of healing cycles is limited with extrinsic healing approaches

• 
• • • • • • • 
• •••• • • • 

·-·----------------­·-·-----------------
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Ionically-crosslinked Polymers for Self-healable Electrical 
Insulation

Damaged Healed

Surlyn
Ionomer

Damaged Surlyn
Ionomer

Healed Surlyn
Ionomer

Average Breakdown 
Voltage (kV)

16.8 ± 1.09 ~9.7 ~15.7

ε 1.567

Na+ ionomer achieved ~93% recovery in 
dielectric strength after healing. Over 85% 
recovery in mechanical strength.

No visible scars
(full recovery not achieved)

Extended temperature 
dwell allows rearrangement 
of ionic networks

Material not suitable for applications with high operating temperature. 

‡Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.
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Textiles and Nano-reinforcement
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Structural Nanocomposites: Lightweight Structures
• PMCs continue to play a significant role with reducing mass of aerospace structures
• Objective: Determine if nanocomposites are a viable alternative to CFRP for composite overwrap 

pressure vessels (COPVs)
• Challenges with nanocomposites: 

• Synthesis
• Processing  properties

• Goals:
• Develop carbon nanotube (CNT) reinforced composites with 1.5 to 2x’s specific strength of 

conventional carbon fiber composites
• Improve strength of bulk CNT reinforcement through processing and post-processing 

methods
• Validate materials by design, fabrication, ground and flight testing of nanocomposite 

overwrap pressure vessel

Split D-ring Mechanical Testing

COPV tank with nanocomposite 
overwrap

Williams, T., et. al, ACS Appl. Mater. Interfaces 2016, 8, 9327-9334

Flight-test preparation:
Nanocomposite overwrap scale-up and burst-testing
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SUCCESSES
– Developed scalable processes to impregnate, 

filament wind, and cure CNT composites
– Over 2 km of prepreg processed and filament 

wound during materials development stage
– After 2017 flight test, nano-COPV effort led to 

Phase III SBIR with Nanocomp to further 
improve CNT yarn and tape to reduce mass in 
aerospace structures

16

CNT Yarn Prepregger

Four axis CNC controlled Filament 
Winder

CNT COPV Manufacturing: CNT Overwrap Development via 

Prepreg Filament Winding

Rings of CNT prepreg on mandrel

Autoclave-cured 
CNT overwrap

Spool of CNT 
yarn prepreg
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Tailorable Textiles: Hybrid Reinforcement with Increased Toughness

Hybrid textiles enable integration of functional 
fibers into conventional reinforcement

Carbon Fiber/ Epoxy 
Control

CNT Yarn – Carbon 
Fiber/Epoxy Hybrid

Resin Impregnated Tows Max Load (N) Tex Value (g/km) Density Increase (%)

Control 282.6 ± 73.1 392.6 ± 24.0 0.0

Hybrid A 445.1 ± 43.8 505.9 ± 46.5 28.8

Hybrid B 521.6 ± 60.0 543.0 ± 52.0 38.3

Hybrid C 494.9 ± 56.2 582.6 ± 45.2 48.4

Hybrid D 541.9 ± 13.5 675.5 ± 14.7 72.1

PMCs are limited in their ability to provide adequate toughness for some aerospace applications
• Resin modifiers and additives
• Nanostructures grown on reinforcement
• Ply Stitching

Challenges 
• Toughened resins: $$$$ and difficult to process
• Lack of controlled nanoparticle synthesis methods
• Ply stitching damages carbon fibers

Tensile Failure of Fiber Tows
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Tailorable Textiles: Toughened Hybrid Reinforcement

IM7 Carbon Fiber Control Braid

Braid speed (rpm)
Mandrel speed (in./min)

𝛼

2
= 𝑡𝑎𝑛−1

𝑅Ω

𝑉

R: Mandrel radius
Ω: Rotational speed of braiding
V: Translational mandrel speed 

Triaxial braid – A&P Technologies
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Tailorable Textiles: Durable Electrically Conductive Textiles (E-textiles)

• E-textile uses in aerospace 
• Spacesuits
• Sensors
• Inflatables
• Blankets
• Health monitors

• Production
• Screen printing with conductive polymers
• Embroidery and stitching

• Stainless steel fibers
• Metallic coating on non-conductive fibers

• Fabrics

Axial Axial

Braiding
yarn

(warp)

Braiding
yarn

(weft)

Hybrid
Tow 

Hybrid
Tow

Carbon
Fiber

Carbon 
Fiber

Enhanced toughness

Hybrid
Tow 

Hybrid
Tow

Carbon
Fiber

Carbon 
Fiber

Electrical conductivity

• Challenges with e-textiles
• Durability
• Reliability
• Manufacturing challenges
• Reparability
• May not have good flexibility depending 

on method

CNT yarn stitched circuit on ballistic Kevlar
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Tailorable Textiles: Shear Thickening Fluid (STF)– Enhanced Fabrics for Impact Energy 
Dissipation

• STFs are dilatant, colloidal suspensions that behave like a solid 
above a critical shear rate

• Hydrodynamic interactions between nanoparticles lead to stiffness 
increase

• STF-treated fabrics have been used as effective, puncture-resistant 
textiles for flexible body armor (Army Research Lab/ Univ. of Delaware)

• Can STFs provide protection against micro-meteor impacts in space?

Goal: Develop lightweight, flexible, impact-resistant textiles for inflatable habitat shells to provide protection against 
micro-meteoroid orbital debris fewer redundant layers mass reduction

Impact-resistant habitat shells and spacesuits

Cubic nanoparticles create 
stronger hydrodynamic 
interactions than spherical 
nanoparticles

Tailorable Text·les: Shear hicken·ng Fluid (STF)- Enhanced Fabrics for Impact E ergy 
Dissipation 
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Textiles: Shear Thickening Fluid – Enhanced Fabrics

Torsional Rheology of STF-treated Fabrics

• Torsional rheology of STF-treated fabrics showed slight increase in 
shear stress at higher frequencies

• Preliminary results from impact tests did not show improvement in 
energy absorption in STF-treated fabrics
• Fabric too concentrated
• Layup not ideal
• Mixing/test methods not optimized

• Need better understanding of shear thickening mechanism in STF-
treated textiles 

Impact Testing STF-treated Fabrics
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Summary

• Polymers play an important role in multifunctional materials development
many projects are ongoing 

• Mature polymer and composites processing and characterization methods 
are still viable to develop multi-functional materials

– Extrusion

– Filament winding/ prepreg production

– Braiding

– DEA

• Lots of potential to integrate multifunctionality into textiles

22
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