

Lessons Learned in Fabrication of a High-Specific-Torque Concentric Magnetic Gear

Zachary	Dr. Justin	Thomas
Cameron	Scheidler	Tallerico

NASA Glenn Research Center

Materials and Structures Division Rotating and Drive Systems Branch

VFS 75th Annual Forum and Technology Display Philadelphia, PA May 16, 2019

Outline

- Background & Motivation
- Prototype-2 Fabrication
- Prototype-3 Fabrication
- Conclusions
- Future Work

- Growth of short haul market & emergence of urban air mobility market
 - Enabled by electrified propulsion systems
 - Prevalence of smaller (lower torque) propulsors
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Geared drive

- + Optimized motor & fan
- More complex
- Potentially less reliable

Mechanical gearing

Pros

- + High / very high torque/mass
 (specific torque)
- + High / very high efficiency
- + Mature technology

Cons

- Contact-related wear & failure
 - Requires lubrication system(s)
 - Routine & costly maintenance
- Strong tonal vibration & cabin noise

Magnetic gearing

Pros

- + Non-contact
 - + No lubrication
 - + Low maintenance
- Easily integrated in electric machines
- + Potentially low vibration

Cons

- Unknown limits on specific torque & efficiency
- Magnet temperature limit
- Individual magnet interaction weaker than 1 gear tooth pair

High Specific Torque **Enabling Design**

- Thinner modulator
- Retaining wall on sun gear only
- Thin structural feet on modulator
- Custom magnet shapes

Specific Torque = 45 Nm/kg

Magnetic Arrays

- Six magnets per each Halbach array with N52 grade magnets
- Bodies made of 3D printed carbon fiber reinforced nylon

Modulator Fabrication

- By far the most difficult and complex part to fabricate (60 total pieces)
- 3D printed carbon fiber reinforced posts press fit into cap
- Pole pieces then inserted with epoxy

Modulator Fabrication

- Wire EDM pole pieces fell apart
- Made assembly very difficult
- Some poles turned out short

Assembly Process

National Aeronautics and Space Administration

Upper Cap North and South Magnets Protruding Modulator Deflecting When Loaded Lower cap not sufficiently stiff 1. Delaminated pole pieces lack stiffness 2. Lower Cap

Modulator and Ring Gear Rubbing Visible from Black Marking Compound

Modulator Rebuild

- Thickened lower cap 1.
- Modified pole piece geometry 2.
- Changed pole piece fabrication process 3.

Old

Pole Piece Design Change

Bounding ring for assembly

New

Reassembly of Prototype 2

Assembling modulator and sun gear

Rotating

Prototype 2 Failure

Modulator failure after limited dynamic testing

Sun Fabrication

- New Halbach array assembly process used (1)
- Laminated custom arc magnets used (2)
- Custom carbon fiber hoop wound directly to array (3)
- Significantly decreased sun gear-modulator air gap

Ring Fabrication

New assembly method, similar to one used on sun gear

End result was Halbach array with no bulging magnets

Modulator Fabrication

Cutting individual pole pieces

Pressing in carbon fiber posts

Inserting pole pieces with epoxy

Modulator Fabrication

Side view of modulator

Internal View

National Aeronautics and Space Administration

Assembly and Installation in Rig

20.8 RPM

- Designed, built, statically tested and dynamically tested 2 prototypes
 - **PT-2** achieved high specific torque, some manufacturing and stiffness issues
 - **PT-3** achieved high efficiency, leveraged fabrication lessons from PT-2
- Key conclusions from fabrication in NASA's Phase 2
 - High Specific Torque is Possible
 - PT-2 utilized thin air gaps, custom magnets, and thin modulator
 - High Efficiency is Possible
 - Enabled by careful material selection & laminations
 - Modulator is most critical and most difficult structure to fabricate
 - multiple assembly methods attempted
 - structures must be very stiff and very durable
 - Enables high performance

25

Phase 3 – integrate high efficiency, high specific torque CMGs with electric motors

- Design
 - Continued improvement to structural designs
 - Explore topologies combining CMGs and motors
 - Continued development of fabrication methods
- Innovation
 - Unconventional solutions for magnet & pole piece containment
 - Electrically-insulating, thermally-conductive structural materials
- Targeted Applications
 - eVTOL UAM vehicles electric propulsors
 - Electrified fixed wing aircraft/X-57 high lift propulsors drive systems
 - Space applications where conventional gearing isn't feasible

26

Acknowledgements

- NASA Revolutionary Vertical Lift Technology (RVLT) Project
- NASA Internal Research & Development (IRAD) Project
- Vivake Asnani
- Glenn Research Center Composites Group
 - Sandi Miller
 - Paula Heimann

27

QUESTIONS ?

Magnetic array design

Why Concentric Magnetic Gear (CMG) Was Selected

- Large amount of previous work to base starting point off of
- Concentric input & output is most logical for most concepts
- High specific torque
- Easily integrated in electric machines

High Speed Operation PT-3

What is a Concentric Magnetic Gear (CMG)

- Three main components
 - Permanent magnet ring gear (fixed)
 - Permanent magnet sun gear (high speed)
 - Modulator (low speed)
- Well established working principles
- Concentric input & output shaft
- Easily integrated with electric machines

- NASA set goals for aircraft efficiency, emissions, reliability, and noise
- Parallel large & small aircraft development
 - Economic benefit of alternative propulsion
- Electrified aircraft propulsion is a key enabler
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Geared drive

- + Optimized motor & fan
- Enables cross shafting
- More complex
- Potentially less reliable

Sun Gear Fabrication

- Magnetic array populated in COTs hoop
- Body made of 3D printed carbon fiber reinforced nylon
- Adhesive allowed to cure before removing acrylic ring

Ring Fabrication

- Forced into place with locating post ٠
- Temporary inner wall removed ٠ when adhesive dried

Modulator Rebuild

- Thickened lower cap 1.
- 2.
- 3.

Pole Piece Design Change

Prototype 2 Key Takeaways

- Higher specific torque possible
- Halbach array assembly critical to air gaps
- Modulator stiffness critical to durability and high performance
 - Can't depend on laminated pole pieces for stiffness
 - Structural posts need to be stiffer

