Investigating Tropical Cyclone Size and

 Integrated Kinetic Energy using CYGNSS and Other DatasetsPatrick Duran ${ }^{1}$ and Dan Cecil ${ }^{2}$

1. University of Alabama in Huntsville

> 2. NASA MSFC
> patrick.duran@uah.edu

CYGNSS Science Team Meeting
6 June 2019
Ann Arbor, MI

Integrated Kinetic Energy (IKE)

- A tropical cyclone (TC) intensity metric first proposed by Powell and Reinhold (2007):

$$
I K E=\int_{V} \frac{1}{2} \rho U^{2} d V
$$

- Accounts for both maximum wind speed and the spatial extent of the surface wind field.
- Can be a better measure of destructive potential than maximum wind speed - particularly for large TCs.

The value of IKE

Hurricane Camille (1969)

Hurricane Katrina (2005)
Camille was stronger in terms of $V_{\max }$.
H^{*} Wind analyses from NOAA/AOML
Hurricane Research Division

The value of IKE

Hurricane Camille (1969)

Camille was stronger in terms of $V_{\text {max. }}$

Katrina's larger wind field made it much more destructive.

Damage (2017 dollars) Camille: $\$ 9.8$ billion Katrina: \$160 billion
H^{*} Wind analyses from NOAA/AOML
Hurricane Research Division

Hurricane Katrina (2005)

The value of IKE

Hurricane Camille (1969)

Camille was stronger in terms of $V_{\text {max. }}$

Katrina's larger wind field made it much more destructive.

IKE (Powell \& Reinhold) Camille: 63 Terajoules Katrina: 122 Terajoules
H^{*} Wind analyses from NOAA/AOML
Hurricane Research Division

Hurricane Katrina (2005)

The value of IKE

Hurricane Camille (1969)

Camille was stronger in terms of $V_{\text {max. }}$

Hurricane Katrina (2005)

IKE provided a better representation of Katrina's destructive potential than $V_{\text {max }}$

IKE (Powell \& Reinhold) Camille: 63 Terajoules Katrina: 122 Terajoules
H^{*} Wind analyses from NOAA/AOML
Hurricane Research Division

IKE Computation

- Assume integration over a 1-m depth:

$$
I K E=\frac{\rho_{0}}{2} \int_{0}^{2 \pi} \int_{0}^{R} u(\theta, r)^{2} r d r d \theta
$$

- Requires knowledge of the velocity at every (θ, r).
- Multiple methods possible:
- Use a data assimilation scheme (e.g. H^{*} WIND) or model analysis.
- Fit observations to a parametric wind profile (e.g. Morris and Ruf).
- Piecewise polynomial interpolation (e.g. tension splines).
- Azimuthally average observations to get a radial profile of velocity.

IKE Computation

- Assume integration over a 1-m depth:

$$
I K E=\frac{\rho_{0}}{2} \int_{0}^{2 \pi} \int_{0}^{R} u(\theta, r)^{2} r d r d \theta
$$

- Requires knowledge of the velocity at every (θ, r).
- Multiple methods possible:
- Use a data assimilation scheme (e.g. H*WIND) or model analysis.
- Fit observations to a parametric wind profile (e.g. Morris and Ruf).
- Piecewise polynomial interpolation (e.g. tension splines).
- Azimuthally average observations to get a radial profile of velocity.

Constructing the radial wind profile

1. Start with an estimate of the radial wind structure using operational wind radii from the Extended Best Track Dataset.

Constructing the radial wind profile

1. Start with an estimate of the radial wind structure using operational wind radii from the Extended Best Track Dataset.

Constructing the radial wind profile

2. Gather all observations collected within 3 hours and 500 km of the best-track storm center from CYGNSS, SFMR, ASCAT, and SMAP.

- CYGNSS v2.1: NBRCS wind retrievals using only the YSLF GMF. All winds with "uncertainty" $>3.5 \mathrm{~m} \mathrm{~s}^{-1}$ filtered out.

Hurricane

Strong TS Weak TS

Constructing the radial wind profile

Removing all observations with "uncertainty" (standard deviation of error) > $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ eliminates unrealistically large wind speeds without removing too many good observations.

Constructing the radial wind profile

2. Gather all observations collected within 3 hours and 500 km of the best-track storm center from CYGNSS, SFMR, ASCAT, and SMAP.

- SFMR: All wind retrievals that did not have any QC flag flipped.
- ASCAT: All wind retrievals that did not have the product monitoring, KNMI, or variational QC flags flipped.

Constructing the radial wind profile

2. Gather all observations collected within 3 hours and 500 km of the best-track storm center from CYGNSS, SFMR, ASCAT, and SMAP.

SMAP winds from Remote Sensing Systems
(Meissner et al. 2017)

Hurricane Irma 9/5/2017 11 UTC

Constructing the radial wind profile

3. Transform observation locations into a storm-centered polar coordinate system, split up by quadrant, and azimuthally average.

Computing IKE

4. Integrate kinetic energy in each quadrant, using only azimuthally averaged winds greater than 34 kt , and sum them to get total IKE.

Black Dots: Individual Wind
Observations
Orange dotted lines:
Initial guess wind profiles from best track.

Blue Lines:
Azimuthally
averaged
wind profiles.

Computing IKE

4. Integrate kinetic energy in each quadrant, using only azimuthally averaged winds greater than 34 kt , and sum them to get total IKE.

Black Dots: Individual Wind
Observations
Orange dotted lines:
Initial guess wind profiles from best track.

Blue Lines:
Azimuthally
averaged
wind profiles.

Potential Applications

- Is there a time of day when TCs exhibit higher IKE?

Duran et al. (2019), GRL, in review

Potential Applications

- Is there a time of day when TCs exhibit higher IKE?

In an idealized simulation, IKE maximizes at 9 AM and minimizes at 9 PM.

Related to a radial expansion of the TC wind field overnight and through the morning, and a contraction during the afternoon, into the evening.

Duran et al. (2019), GRL, in review

Potential Applications

- Is there a time of day when TCs exhibit higher IKE?

Composite mean 10-m total wind speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$

In an idealized simulation, IKE maximizes at 9 AM and minimizes at 9 PM.
Can we verify this with observations?

Related to a radial expansion of the TC wind field overnight and through the morning, and a contraction during the afternoon, into the evening.

Hurricane Irma - September 2-3, 2017

Hurricane Irma - September 2-4, 2017

Hurricane Irma - September 2-4, 2017

CYGNSS winds ($\mathrm{m} \mathrm{s}^{-1}$) within 500 km and within 3 h prior to If

9 AM Sep 4

$56^{\circ} \mathrm{W} \quad 54^{\circ} \mathrm{W} \quad 52^{\circ} \mathrm{W} \quad 50^{\circ} \mathrm{W}$
ASCAT winds $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ within 500 km and within 3 h prior to IRN

Future Directions

- Use CYGNSS, ASCAT, and SMAP to construct climatologies of wind radii and IKE in TCs across the globe.
- Stratify by TC intensity, vertical wind shear, ocean basin, etc.
- Investigate the diurnal cycle of TC wind radii and IKE using the climatologies as a reference point.
- Refine algorithm to combine observations from different platforms and construct radial wind profiles.
- Weight observations by observation platform and/or average the wind speeds from each platform first, then take total average.
- Account for differences in horizontal resolution.
- Take maximum value in each radial bin instead of average.

Extra Slides

CYGNSS L3 WIND SPEED : 20170904 (1800Z-0000Z) AL11 [IRMA] : VMAX 115 KTS

CYGNSS winds $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ within 300 km and 3 h

IKE History - Hurricane Irma (2017)

- Compute IKE every hour, using 6 hours of observations (all observations within 3 hours before or after best track time).

IKE History - Hurricane Irma (2017)

IRMA | 09/03/2017 19:00 UTC | V max $51.4 \mathrm{~m} \mathrm{~s}^{-1}$ (100 kt) | RMW 28 km

IRMA | 09/03/2017 20:00 UTC | V max $51.4 \mathrm{~m} \mathrm{~s}^{-1}$ (100 kt) | RMW 28 km

IRMA | 09/03/2017 21:00 UTC | V max $51.4 \mathrm{~m} \mathrm{~s}^{-1}$ (100 kt) | RMW 28 km

Where CYGNSS Adds Value

- When aircraft reconnaissance is unavailable (e.g. far from land).

Where CYGNSS Could be Improved

Where CYGNSS Could be Improved

Other Causes of Large IKE Fluctuations

Date and Time (UTC)

[^0]——Best track+obs

- Presence of land in the averaging radii precludes observations from all platforms currently in the dataset.

IRMA | 09/10/2017 23:00 UTC | V ${ }_{\text {max }} 51.4 \mathrm{~m} \mathrm{~s}^{-1}$ (100 kt) | RMW 28 km

IKE History - Hurricane Irma (2017)

Total IKE (sum of 4 quadrants) - IRMA

---- Best track only
——Best track+obs

- Observations typically produce smaller IKE estimate than best track wind radii.
- A good thing.
- Best track wind radii are the maximum extent of the winds in a given quadrant.

IKE History - Hurricane Irma (2017)

Total IKE (sum of 4 quadrants) - IRMA

Date and Time (UTC)

- Observations typically produce smaller IKE estimate than best track wind radii.
- A good thing.
- Best track wind radii are the maximum extent of the winds in a given quadrant.
- Sharp drops in IKE can occur when observations become available.
- Sometimes good; sometimes not.
- Large temporal fluctuations are related to availability of observations, and are typically unphysical.

Extra Details on Best Track Radial Wind Profile

- Use RMW and $\mathrm{V}_{\max }$ from best track.
- Assume that RMW is valid in quadrant with largest r_{34}, and scale the RMW by r_{34} in all of the other quadrants (i.e., a quadrant with a smaller r_{34} has a smaller RMW.
- $\mathrm{V}_{\text {max }}$ is the same in each quadrant, unless there is no corresponding wind radius (e.g., if $\mathrm{V}_{\max }=60 \mathrm{kt}$, but there is no 50-kt wind radius defined in a quadrant, it does not make sense for $v_{\text {max }}$ to be 60 kt in that quadrant).
- In this case, define $\mathrm{V}_{\text {max }}$ in that quadrant to be 5 kt less than the lowest missing wind radius in that quadrant.
- In the above example, $\mathrm{V}_{\max }$ would be 45 kt .

[^0]: ---- Best track only

