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A family of cases each containing a small separation bubble is treated by direct
numerical simulation (DNS), varying two parameters: the severity of the pressure
gradients, generated by suction and blowing across the opposite boundary, and the
Reynolds number. Each flow contains a well-developed entry region with essentially
zero pressure gradient, and all are adjusted to have the same value for the momentum
thickness, extrapolated from the entry region to the centre of the separation bubble.
Combined with fully defined boundary conditions this will make comparisons with
other simulations and turbulence models rigorous; we present results for a set of
eight Reynolds-averaged Navier–Stokes turbulence models. Even though the largest
Reynolds number is approximately 5.5 times higher than in a similar DNS study we
presented in 1997, the models have difficulties matching the DNS skin friction very
closely even in the zero pressure gradient, which complicates their assessment. In the
rest of the domain, the separation location per se is not particularly difficult to predict,
and the most definite disagreement between DNS and models is near reattachment.
Curiously, the better models tend to cluster together in their predictions of pressure
and skin friction even when they deviate from the DNS, although their eddy-viscosity
levels are widely different in the outer region near the bubble (or they do not rely
on an eddy viscosity). Stratford’s square-root law is satisfied by the velocity profiles,
both at separation and reattachment. The Reynolds-number range covers a factor of
two, with the Reynolds number based on the extrapolated momentum thickness equal
to approximately 1500 and 3000. This allows tentative estimates of the improvements
that even higher values will bring to the model comparisons. The solutions are used
to assess models through pressure, skin friction and other measures; the flow fields
are also used to produce effective eddy-viscosity targets for the models, thus guiding
turbulence-modelling work in each region of the flow.

Key words: boundary layer separation, turbulence modelling, turbulence simulation

1. Introduction: background and objectives
This study considers the pressure-gradient-induced separation and reattachment of

flat-plate turbulent boundary layers. It is a continuation, both in terms of its topic and

† Email address for correspondence: g.n.coleman@nasa.gov
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Turbulent separation bubbles 29

approach, of our earlier work (Spalart & Coleman 1997; henceforth denoted SC97),
which used direct numerical simulation (DNS) of a single configuration at, arguably, a
marginal Reynolds number although the flow was definitely turbulent. Computational
resources now allow DNS of multiple separation bubbles, created by sudden and
more gradual pressure gradients, at Reynolds numbers much higher, and in domains
much larger, than reachable to SC97. Other simulations of the separation-bubble
configuration include Na & Moin’s (1998) DNS from the same era (see also Skote
& Henningson 2002) and Abe’s (2017) DNS, as well as Raiesi, Piomelli & Pollard’s
(2011) and Cheng, Pullin & Samtaney’s (2015) large-eddy simulations (LES). Abe’s
flow fields (and approach) are very similar to ours, but unfortunately at somewhat
different conditions. Primarily addressing the behaviour of wall-pressure fluctuations,
Abe did vary the pressure-gradient strength to some extent, and covered a factor of
three in Reynolds number (up to 900, based on upstream/inflow momentum thickness),
observing the strongest Re effects near reattachment. The flow with laminar separation
and turbulent reattachment has been addressed by Alam & Sandham (2000) and
Spalart & Strelets (2000), and is quite different.

In engineering applications relevant to the air, sea or ground, the critical role played
by turbulent-boundary-layer separation – via its power to set optimal design conditions,
to make distant regions of the flow sensitive to each other and thereby to severely
challenge turbulence models by taking them far away from their training grounds
– is well established (Slotnick et al. 2014). The present focus is upon the small
separation bubble that results from subjecting a well-defined zero-pressure-gradient
(ZPG) turbulent layer to a prolonged adverse pressure gradient (APG), followed
shortly after the mean-flow reversal, by a favourable gradient (FPG) and another ZPG,
of long enough duration to allow the boundary layer to recover toward the canonical
ZPG state. The APG region will display departures from the log law, which will be
either general or progressive (Galbraith, Sjolander & Head 1977). This admittedly
constrained configuration is motivated by the perennial limitations on the volume
of turbulence capturable by DNS. For instance, DNS of a circular-cylinder flow is
possible, without precipitating reattachment, but typically at Reynolds numbers of a
few thousand based on diameter; here the Reynolds number is of a few thousand
based on boundary-layer thickness, so that we are emulating the boundary layer
in a flow that could have a longitudinal Reynolds number in the million range.
We do note the impressive cylinder and sphere simulations of Rodriguez et al.
(2014), which approach the million mark based on diameter and reproduce the ‘rich
kaleidoscope of fluid-mechanic phenomena’ Mark Morkovin described so eloquently.
These simulations are labelled as LES, but we speculate that the key region, which
mingles separation and transition, comes close to DNS.

The present flow is devoid of any features of compressibility (in contrast with
the Bachalo–Johnson (1986) transonic shock-induced separation) or surface variation,
either gradual (as in the NASA wall-mounted hump experiment; Naughton, Viken
& Greenblatt 2006; Uzun & Malik 2017) or sudden (as in the backward-facing-step
or surface-mounted-cube flows; e.g. Castro & Robins 1977; Driver & Seegmiller
1985; Le, Moin & Kim 1997; Yakhot et al. 2006). On the other hand, in a
continuation paper we will present results with sweep, motivated by the definite
three-dimensionality of many key boundary layers, on aircraft, on vehicles, on wind
turbines and so on. In fact we speculate that three-dimensional separation could be
less difficult to predict, the near-wall turbulence still being driven by a non-zero
skin-friction vector.

An essential requirement of this study is to provide precise boundary conditions,
and also a precise characterisation of the ZPG entry region as a fully developed
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30 G. N. Coleman, C. L. Rumsey and P. R. Spalart

turbulent layer with essentially no memory of how the turbulence was generated,
so that specifying the boundary-layer thickness is sufficient information for any
comparison, be it with another DNS, LES, Reynolds-averaged Navier–Stokes (RANS)
solutions or even an experiment. (This strategy was pioneered, in an experimental
context, by Driver & Johnston (1990) and Driver (1991), in their studies of separation
in axisymmetric boundary-layer flow over longitudinal cylinders.)

An auxiliary interest is in the square-root velocity profile proposed by Stratford
(1959) at separation, which in other work we have found to be quite successful
(Coleman et al. 2017). A key consideration is that our other study was of a
Couette–Poiseuille flow, independent of streamwise direction x in the mean, with
sustained zero skin friction; compare this with Stratford’s original flow, with sustained
zero skin friction but a rapidly thickening boundary layer, and the present situation in
which the skin friction merely crosses zero in one direction and then the other. The
resilience, if any, of the square-root law and its constants to these rather significant
differences is of deep theoretical interest.

The primary measures of this family of flows are the usual wall pressure and skin-
friction distributions, followed by velocity and Reynolds-stress profiles. These result
from the behaviour of the turbulence in the entire domain surrounding the bubble,
so that specific deviations of a model are difficult to identify. Another direction of
effort is attempts to assess the behaviour of RANS models locally. Such guidance
could potentially inspire substantial improvements, even if it is used ‘manually’, as
opposed to by machine learning. As in Raiesi et al. (2011) (see also Abe et al. 2012),
a primary element of this style of work is the definition of an effective eddy viscosity,
giving a single target for models at each point, rather than inspecting all six Reynolds
stresses and trying to identify the pivotal one. (For instance, in unidirectional flows
with e.g. U solely as a function of y, the shear stress −u′v′ is the only one to have any
effect, but this is not true in a fully two-dimensional flow.) We demonstrate below that
this scalar eddy viscosity does not return the exact DNS flow field when introduced
into the momentum equation, presumably because the linear Boussinesq, or even the
nonlinear, constitutive relations have their own errors, but it is a sound first step. Even
though this quantity is local, history effects and the interplay between the relatively
numerous terms in the models make it far from trivial to decide which term to alter,
and RANS modelling still demands a lot of judgment. Naturally, a central difficulty
resides in improving the accuracy in the present flow or flow family, while satisfying
the fundamental invariance requirements and without damaging the accuracy in the key
past calibration cases. Another exercise, also aimed at bringing out local failures of
the models, consists of solving the transport and constitutive equations of the models
by using the mean velocity field from the DNS wherever it appears in the closure,
without applying the momentum equation. This makes the comparison with the DNS
effective eddy viscosity even more direct; it is employed below, and the results are
contrasted with the eddy-viscosity field diagnosed from the DNS.

The numerical approach and parameters used for the DNS are described in § 2
(with specialist details given in appendices A and B) – relating how the simulations
were done, how confidence in their accuracy was established and how the data can
be accessed. The DNS results are presented in § 3 (and appendix C) – addressing
fundamental questions and turbulence theory. Section 4 contains a RANS-model study
– examining the ability of a range of commonly used computational fluid dynamics
(CFD) models to reproduce the DNS data. The summary and closing remarks offered
in § 5 recap the major findings and practical implications of this study, and state our
future plans.
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FIGURE 1. Subdomain Case A visualisations of (a) Q ≡ −(1/2)(∂ui/∂xj)(∂uj/∂xi) =
5U2
∞
/Y2 isocontours, coloured by wall-normal coordinate y, (b) isocontours of streamwise

velocity perturbation u′, relative to local spanwise averaged velocity (dark, u′ =−0.1U∞;
light, u′ = +0.1U∞), (c) streamwise velocity at y/Y = 0.2 (i.e. 20 % of the distance
between the no-slip surface and height at which transpiration boundary condition is
applied) and (d) wall-normal gradient of streamwise velocity ∂u/∂y at y= 0 (black lines,
∂u/∂y = 0; red contours, ∂u/∂y < 0). Subdomain shown is from x/Y = −5.5 to 5.5
and z/Y = 0 to 2 (i.e. 42 % and 50 % respectively of the full −11.5 6 x/Y 6 14.5 and
0 6 z/Y 6 4 domain). Visualisation of detail may require expansion of online version of
figure.

2. Approach
2.1. Problem formulation and numerical strategy

As in SC97, the flow in question is a fully turbulent incompressible ZPG boundary
layer over a flat no-slip surface, subjected to first adverse then favourable mean
streamwise pressure gradients. The pressure gradients are induced by a transpiration
profile Vtop(x) through a virtual parallel plane offset a fixed distance Y from the
no-slip surface. Instantaneous realisations of off-the-wall and near-wall turbulence
structures for one of the cases are illustrated in figure 1. Corresponding mean-flow
contours and streamlines are shown in figure 2.

The strength and duration of the pressure gradients are controlled via the maximum
velocity Vmax and length scale σ of the transpiration profile, where

Vtop(x)=−
√

2Vmax

[ x
σ

]
exp

(
1
2
−

[ x
σ

]2
)
+ ϕtop, (2.1)

with x = 0 defined as the location at which Vtop changes from suction to blowing
(see figure 3a). This profile (the derivative of a Gaussian) is associated with a bell-
shaped streamwise variation of static pressure (see figure 3b and below). The last term
in (2.1), ϕtop, is a (small) constant ‘bleed’ velocity, adjusted to offset the blockage in
the (nominally) ZPG regions, and thereby produce dP/dx≈ 0 along the wall there.

The procedure used to impose the transpiration profile at y= Y in a periodic/semi-
infinite spectral algorithm will be described below. An equivalent alternative to what
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FIGURE 2. Contours of mean streamlines and (a) streamwise velocity u and (b) spanwise
vorticity ωz for Case A. Shaded/grey regions at in/outflow of domain are fringe zones.
Solid vertical lines indicate mean separation and reattachment locations. Subdomain below
y= Y shown.

follows is to specify the irrotational transpiration boundary conditions at y= Y as

v = Vtop(x),
∂u
∂y
=

dVtop

dx
,

∂w
∂y
= 0. (2.2a−c)

These conditions could be applied in DNS, LES or RANS calculations that use a finite
domain in the wall-normal direction; for a RANS calculation, they correspond to, for
example, v′v′ = ∂u′u′/∂y = 0. (Some RANS models may need additional conditions
for their dependent variables, especially if they involve pressure.)

The present solutions are obtained using the fully spectral scheme of Spalart,
Moser & Rogers (1991), with mean streamwise variations accommodated by the
‘fringe method’ introduced by Spalart & Watmuff (1993) (cf. shaded regions in
figure 2); see appendix A. Note that the top of the computational domain is not
at y = Y: the domain is semi-infinite in the wall-normal direction y (between a
no-slip wall at y= 0 and y→∞), and periodic in the streamwise x and spanwise z
directions. The wall-normal basis functions involve Jacobi polynomials in ζ ∈ [0, 1],
mapped to the y∈ [0,∞] domain via ζ = exp(−y/y0), where y0 is the mapping length
scale. Apart from the alterations to the fringe treatment described in appendix A,
the implementation is equivalent to that described in SC97, to which the reader is
referred for details. For present purposes, we note that the strategy (first applied to a
non-separating turbulent APG boundary layer, by Spalart & Watmuff (1993), and later
to a laminar separation/turbulent reattachment by Spalart & Strelets (2000)) involves
decomposing the velocity field U into three components: the ‘vortical’ computational
variable U1, the fringe term U2 (see appendix A) and the field U3 by which the
upper-wall transpiration-profile boundary condition is imposed (appendix B). The
manner in which the three fields interact, and the alterations they introduce to the
Navier–Stokes equations solved by the DNS code, is explained in SC97.
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FIGURE 3. (Colour online) Streamwise variation of (a) transpiration profile along y= Y ,
(b) mean wall pressure and (c) momentum-thickness Reynolds number: · · · · · ·, SC97;
- - - - (blue), Case A; — · — (green), Case B; —— (red), Case C. (Cases B and C
results are identical in a.) Symbols in (b) correspond to mean separation and reattachment
locations:E, SC97;@ (blue), Case A;A (green), Case B;6 (red), Case C. Thicker and
thinner lines in (b) respectively indicate (pwall − P∞)/(1/2)ρU2

∞
and the blockage-free

wall-pressure variation 1− (Uslip/U∞)2, where Uslip is the irrotational slip velocity induced
by Vtop (see appendix B). Solid/thinner lines in (c) trace the virtual ZPG Reynolds-number
variation, based on continuation of the ZPG region via either linear extrapolation (SC97)
or, for Cases A–C, integration of a curve fit of the Coles (1962) ZPG boundary-layer data
(see figure 5b and its legend). Results in (c) have been locally averaged in x.

2.2. Cases and quality diagnostics
The length Y and the free-stream value U∞ of the ZPG boundary layer will be used to
normalise most quantities. The principal non-dimensional parameters are summarised
in table 1; the SC97 values are also included for reference. The transpiration
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Case U∞Y/ν U∞θ0/ν Vmax/U∞ σ/Y ϕtop/U∞

SC97 22 000 565 0.4350 1.22 0
A 40 000 1437 0.4000 1.22 0.0034
B 40 000 1537 0.1333 3.66 0.0034
C 80 000 3121 0.1333 3.66 0.0034

TABLE 1. Case parameters.

parameters Vmax and σ have been adjusted to produce a small separation bubble.
For all three new cases, the transpiration strength Vmaxσ is 0.49U∞Y , which produces
boundary layers whose thickness grows to be as much as 90 % of Y (figure 8b).
For SC97, the Vmaxσ product was slightly larger, 0.53U∞Y , corresponding to a
slightly deeper skin-friction reversal (figure 7). The momentum thickness θ0 is a
virtual quantity, namely the thickness extrapolated from the ZPG region to x = 0.
For comparisons of cases at different Reynolds numbers and with different pressure
gradients, all having different rates of growth for θ versus x, this appears to be
a more relevant (albeit still somewhat arbitrary) measure than the thickness at a
given distance upstream, say x/Y = −5. This illustrates the challenge of defining
a true family of cases, particularly when attempting to isolate relatively subtle
Reynolds-number effects, in contrast with simple channel studies for instance.

The suddenness of the separation-inducing APG is controlled by σ : Case A employs
the same σ/Y as SC97, corresponding to a quite abrupt dP/dx, while for Cases B and
C the pressure-gradient variation is more gradual, by way of a threefold increase in
σ/Y relative to A and SC97 (compare figure 3a,b). Note that the current streamwise
domain size is large enough to provide a significant ZPG/recovery region.

The x= 0 location of Vtop(x) (i.e. the streamwise station of the APG/FPG transition)
varies from 44 to 59 % of Λx from the entrance to the (periodic) domain. This
variation is a consequence of the strategy used to facilitate comparison of the new
cases, which aimed to effect separation upon ZPG boundary layers with the same
momentum thickness θ , extrapolated as explained above. The transpiration profile for
each run was translated in x such that the virtual thickness of the ZPG layer (i.e. the
thickness that would exist were the APG not applied) at x= 0, θ0, is approximately
the same for each case. The virtual momentum thickness is estimated by using the
behaviour observed in the Coles (1962) experiments to extrapolate the streamwise
variation of θ in the (pre-APG) ZPG region to the x = 0 location (see thin lines in
figure 3c, which are based on the skin-friction versus momentum-thickness Reynolds
number interpolant, Cf = Cf (Rθ), shown in figure 5b). The virtual Rθ at x = 0 is
another defining characteristic of the DNS cases (see table 1). Values from 565
(SC97) to 3100 (C) are now available.

The numerical parameters are summarised in table 2. Based on the maximum
skin friction τw over the ‘useful region’ (i.e. where the fringe terms are inactive;
see figure 2), the spatial resolution for the three new cases is such that the
maximum streamwise 1x and spanwise 1z spacings are respectively 13.5 and 6.2
wall units, while the tenth wall-normal collocation point y10 is at most 4.6ν/uτ (the
exponential-mapping length scale – see above – is y0= 0.343Y for all cases, including
the case presented in SC97). Given that 1x+ =1uτ/ν ≈ 12ν/uτ and y+10 ≈ 6 are the
threshold values for a fully spectral code, in terms of producing accurate first- and
second-order statistics for wall-bounded turbulence (Spalart, Coleman & Johnstone
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Case Λx/Y xin/Y xout/Y Λz/Y Nx 1x+ Ny y+10 Nz 1z+

SC97 10 −6.5 3.5 1.43 640 18.9 200 2.2 256 6.8
A 26 −11.5 14.5 4.0 3840 13.5 200 3.6 1280 6.2
B 26 −13.0 13.0 4.0 3840 13.4 200 3.6 1280 6.2
C 26 −15.35 10.65 4.0 7680 12.3 240 4.6 2560 6.0

TABLE 2. Numerical parameters. Origin of streamwise coordinate x, and thus locations of
inflow xin and outflow xout stations, is defined by location of sign change of transpiration
profile Vtop(x), with xout − xin=Λx, where Λx is the streamwise period of the domain (see
figure 3a and main text); spanwise period is Λz. The reference velocity U∞ and pressure
P∞ are defined at (x, y)= (xin + 2Y, 0.5Y). Dealiasing is enforced by defining the number
of quadrature/collocation points, Nx, Ny and Nz, such that they are related to the number of
streamwise, wall-normal and spanwise Galerkin spectral expansion coefficients, respectively,
by Mx= 2Nx/3, My= (2Ny− 9)/3 and Mz= 2Nz/3. Spatial resolution is quantified in terms
of the quadrature grid, such that 1x=Λx/Nx and 1z=Λz/Nz; the distance y10 is that of
the tenth wall-normal quadrature point from the bottom of the domain (with y1= 0). Wall
units, e.g. 1x+ =1x uτ/ν and y+10 = y10 uτ/ν, are based on maximum skin friction within
the domain, downstream of the fringe zone, upstream of separation (figure 7a).

2009), the streamwise and especially wall-normal values for the near-wall regions of
the new cases are adequate. On the other hand, the spanwise resolution is marginal
in the ZPG region, since 1z+ ≈ 4 is required to ensure the near-wall structures are
faithfully captured (cf. Spalart et al. 2009). However, for our present purposes this is
not a serious problem: rerunning Case A with Nz = 1920, such that 1z+ is reduced
from 6.2 to 4.1, revealed at most a 2 % reduction in mean skin friction in the ZPG
regions, and no discernible changes to the separation and reattachment locations,
relative to the 1z+ ≈ 6 results presented below.

The other critical issue regarding spatial resolution is the ability of the scheme
to capture the spatial variations associated with the detached shear layer above the
separation bubble, both because of the increased wall-normal velocity gradient ∂u/∂y
and because of the thickening influence of the APG, which transports nearer-wall
turbulence upwards (cf. figure 1) into regions of larger wall-normal spacing 1y (recall
that with the spectral method, it is not an option to independently refine in one region
or another). Consequently, 1y is the largest multiple of the local Kolmogorov length
scale η here. The maximum occurs for Case C, with 1y/η = 9.2 (the maximum
for both A and B is approximately 6.5). As this is (just) within the range required
for spectral methods to produce accurate first- and second-order statistics (Moin
& Mahesh 1998), we do not expect the results presented below to suffer from
appreciable spatial-resolution-induced inaccuracies. (Sandham (2002) quotes a smaller
critical value, 1y/η ≈ 5, perhaps to account for lower-order, non-spectral schemes.)
However, we should point out that the resolution is not fine enough to completely
accommodate the small but non-zero vorticity near the top wall, at x ≈ 0 stations,
where the boundary layer is thickest, and thus yields the worst-case condition (see
figures 2 and 8b). This deficiency (which was more pronounced in SC97) is revealed
by the minor near-wall oscillations (Gibbs phenomenon) in the x= 0 profiles for all
three cases (figure 4). While these oscillations imply that certain statistics, for example
Reynolds-stress budgets, will be somewhat suspect near separation, their magnitude
is a relatively small fraction of the maximum, and the oscillations evidently have
negligible effect on results at other stations: note the smooth behaviour (also found
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FIGURE 4. (Colour online) Profiles of mean spanwise vorticity ωz and root-mean-square
enstrophy fluctuations ω′iω

′
i
1/2

in ZPG regions (no symbols, at x locations specified in
figure 5a) and at x = 0 (symbols): - - - -/@ (blue), Case A; — · —/A (green), Case B;
——/6 (red), Case C.

at other stations away from x≈ 0) of both the fluctuation- and mean-vorticity profiles
from the ZPG regions of all three cases, shown in figure 4 (no symbols), and
the overall momentum balance in figure 17 (appendix C). This residual error is
therefore not expected to seriously compromise any of the lower-order statistics, or
the conclusions upon which they are based.

The present streamwise Λx and spanwise Λz domain sizes represent considerable
improvements over those of SC97, with Λx and Λz now 2.6 and 2.8 times larger,
respectively. The former allows a canonical ZPG layer to form upstream of
separation, as well as significant redevelopment toward ZPG conditions downstream
of reattachment; the latter avoids constraint of the large-scale structures that tend
to form away from the wall, downstream of the separation region (cf. Na & Moin
1998; Abe 2017). The sufficiency of Λz was confirmed by inspecting two-point
spanwise correlations in appropriate regions. The adequacy of the domain periods is
also supported by figure 1, which presents Case A visualisations from a subregion
ranging from x=±5.5Y (centred about x= 0), and spanning half the full Λz domain.

Each case was initialised by random velocity fluctuations that approach zero
in the free-stream as (y/Y) exp(−0.1y2/Y2). A mixed implicit/explicit (Crank–
Nicolson/Runge–Kutta) time-advance algorithm is used (Spalart et al. 1991), under
conditions of constant peak Courant–Friedrichs–Lewy (CFL) number, of 1.7, with
respect to a Galilean reference frame translating at 0.4U∞ (to maximise the allowable
time-step). This yields an average time-step of 1t ≈ 1.5 × 10−3Y/U∞ for Case A,
1.7 × 10−3Y/U∞ for Case B, and 9.3 × 10−4Y/U∞ for Case C; the corresponding
values in wall units are respectively 1t+ =1t u2

τ/ν ≈ 0.15, 0.17 and 0.155.
Statistics were gathered by averaging over z and in time, involving 1066, 1051 and

278 full x–y fields over periods of 186.5, 195 and 52Y/U∞, respectively, for Cases A,
B and C (respectively corresponding to 7.2, 7.5 and 2.0 domain-flow-through times
Λx/U∞). Some quantities were also locally averaged in x, using a Gaussian filter of
width 0.02Y to 0.06Y . (See figures 3c, 6, 7b, 8, 10b, f, 15, 12, 16a and 17b.) The
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z- and t-averaged data are available from the NASA Turbulence Modeling Resource
(TMR) website, https://turbmodels.larc.nasa.gov.

Computations were run on the NASA Advanced Supercomputing (NAS) Division’s
Pleiades system, a distributed-memory SGI ICE cluster, on from 1024 to 4096 cores.
A total of about 94 600 (Case A), 92 700 (B) and 357 000 (C) CPU core hours were
utilised during the statistics-gathering phase of the computations.

3. DNS results
The results in this section were chosen primarily because of their relevance to

basic questions regarding turbulence theory and RANS modelling. After considering
the quality of the ZPG flow upstream of the separation (in § 3.1), and therefore
the flow’s suitability as a RANS-modelling benchmark (or as the subject for DNS
and LES studies by other groups), we investigate the general characteristics of the
flow, via the streamwise variations of its mean and integral quantities (§ 3.2). The
pressure-gradient-induced changes of the mean-velocity profiles are then examined, in
terms of near-wall scaling, as the mean skin friction falls and later recovers towards
ZPG conditions, and in terms of the ‘Stratford scaling’, as the skin friction approaches
zero (§ 3.3). The streamwise evolution of the terms in the turbulent-kinetic-energy
(TKE) budget is then documented for the highest-Re data (Case C) (§ 3.4), after which
these results are used to determine the sensitivity to pressure gradient of algebraic
near-wall length scales used by wall functions and some common RANS transport
models (§ 3.5).

3.1. ZPG reference state
The degree to which we have met the objective of achieving a canonical ZPG state
upstream of the APG, for each of the three cases, can be assessed in figures 5 and 6.
The ZPG reference stations are chosen as x/Y =−5 for Case A, −8 for B and −9.5
for C; at these stations, the local pressure gradient in wall units, p+= (dP/dx)(ν/u3

τ ),
is 0.000 (A), 0.001 (B) and 0.000 (C). The mean-velocity and −u′v′ shear-stress
profiles, the displacement/momentum-thickness shape factor, and the skin friction are
all characteristic of constant free-stream velocity boundary layers at their respective
Reynolds numbers (Rθ = 1035, 876 and 1744, for Cases A–C). The present situation
is significantly better than for SC97, for which Rθ ≈ 300, a pronounced log-law
region, was absent (figure 5a), and the skin friction was abnormally low (figure 5b).
In contrast, the Rθ dependence of δ∗/θ and Cf from the new runs compares well
with previous DNS (Spalart 1988) and the (Coles 1962) data for ZPG boundary
layers. The Case C TKE and TKE budget in figure 6 also agree extremely well
with Schlatter & Örlü’s (2010) ZPG DNS at Rθ = 2000. This agreement, for various
quantities, provides strong evidence for the success of the fringe-zone inflow/outflow
treatment, in allowing a spatially developing flow to be faithfully represented in a
periodic domain, and for the adequacy of the streamwise domain size, in allowing
sufficient length for the flow to develop toward a universal ZPG state defined solely
by Rθ .

The solid line in figure 5(b) is a curve fit of the Cf versus Rθ relationship found
in the Coles results. As mentioned above, this was used (by integrating the ZPG
momentum-integral equation dθ/dx= Cf /2) to estimate the θ variation with x of the
virtual ZPG boundary layer into the APG region – and thus set the origin (i.e. location
of the APG-to-FPG transition) for the transpiration profile Vtop(x) for the three cases;
see figure 3(a,c). For each of Cases A, B and C, we conclude that the ZPG boundary
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FIGURE 5. (Colour online) (a) Mean-velocity and −u′v′ shear-stress profiles in ZPG
regions: · · · · · ·, SC97; - - - - (blue), Case A (x/Y =−5); — · — (green), Case B (x/Y =
−8); —— (red), Case C (x/Y =−9.5). Thicker lines in inset plots show τ/ρ =−u′v′ +
ν ∂ u/∂y. (b) Skin friction and shape factor: +, Coles (1962);u, Spalart (1988);E, SC97;
@ (blue), Case A;A (green), Case B;6 (red), Case C; ——, interpolant of Coles data for
1000< Rθ < 4000: Cf = a+ bRθ + cR2

θ , with (a,b,c)= (0.0055,−1.2× 10−6, 1.5× 10−10).
Skin friction based on reference velocity, Cf = τw/(1/2)ρU2

∞
. DNS thicknesses from

(3.1)–(3.4).

layers to which the APG is applied is indeed canonical, in the sense that it can be
uniquely specified solely in terms of its thickness (since θ defines Rθ which defines
Cf which defines dθ/dx). This is an essential feature for DNS (or experimental) data
that are to be used as a benchmark for RANS-model testing. Note, however, that
the Reynolds numbers considered here are still somewhat below the range RANS
modellers seem to have been able to cover well when they developed their closures
for ZPG boundary layers. (The minimum appears to have been Rθ ≈ 5000; see results
presented on the TMR website (https://turbmodels.larc.nasa.gov), and recall historical
estimates that ‘low-Reynolds-number effects’ in the ZPG flow end around Rθ ≈ 6000.)
On the other hand, asking a RANS model to capture the skin friction at Rθ ≈ 2000
does not strike us as an unreasonable or irrelevant exercise. We describe below how
this can be done for a one-equation eddy-viscosity scheme. Moreover, the separation
phenomena of interest in this study are either controlled by essentially inviscid
processes, or will have their Reynolds-number sensitivity revealed by a comparison
of the SC97, A, B and C results.

3.2. Basic features of the separation bubble
Highlights of this subsection include Reynolds-number dependence of the skin-friction
behaviour, comparison of alternative measures of the boundary-layer thicknesses, and
a test of integral-parameter predictions of separation.

The geometry and general overview of the flow are illustrated above, in figures 1–3.
The turbulence structures in figure 1 reveal a number of noteworthy qualitative
features. The relative size of the structures points to the adequacy of the domain size.
(Recall that these plots contain x–z subregions of the Case A domain, 42 % of Λx
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FIGURE 6. (Colour online) Profiles of (a) turbulent kinetic energy (TKE), k = (1/2)u′iu′i,
and (b) terms in TKE budget for Case C in ZPG region (x/Y = −9.5; Rθ = 1744).
Production rate, Pk = −u′iu′j∂ui/∂xj; dissipation rate, εk = ν(∂u′i/∂xj)(∂u′i∂xj); turbulent
transport, Tk = −(1/2)∂u′iu′iu′j/∂xj; viscous transport, Dk = ν ∂

2k/∂xj∂xj; velocity–pressure-
gradient correlation, Πk =−(u′i/ρ)∂p′/∂xi. All budget terms computed directly, except Πk,
which is inferred from imbalance (including Dk/Dt). Budget terms normalised by u4

τ/ν,
where uτ/U∞ = 0.0436 and uτY/ν = 349. Thin solid curves in (a) and (b) are from
Schlatter & Örlü’s (2010) ZPG turbulent-boundary-layer DNS at Rθ = 2000. Results have
been locally averaged in x.

and 50 % of Λz.) Figure 1(a) shows the fully turbulent nature of the separation, and
that the vortex structures, visualised by isocontours of the so-called Q-criterion (Hunt,
Wray & Moin 1988), are convected away from the wall in the APG, and toward it
in the FPG (these isocontours are coloured by wall-normal distance). The velocity
contours in figure 1(b,c) display the increase in size, relative to those found upstream,
of the turbulence structures streaming from near the reattachment station (cf. Abe
et al. 2012; Abe 2017). (That the large-scale structures are not also found upstream
of the separation is another indication of the success of the fringe inflow/outflow
treatment.) The effect of the APG on the near-wall streaks – in particular how they
terminate just upstream of the mean separation – can be seen in figure 1(d) (the red
regions in this plot correspond to reversed flow, which tend to reach upstream into
the low-speed ‘valleys’). The streaks eventually regain their canonical/ZPG shape and
spacing in the recovery region downstream of reattachment.

The grey/shaded zones in figure 2 indicate the approximately 15 % of the domain
in which the fringe boundary-condition terms are active, and how they allow the
non-shaded ‘useful region’ of the periodic domain to faithfully represent the spatial
development of mean statistics. The large fraction of domain devoted to the ZPG
regions upstream and downstream of the small separation bubble is apparent. (Note
the mean backflow within the bubble, indicated by pink in figure 2a.) The significant
thickening of the boundary layer, induced by the transpiration boundary conditions
at y = Y , is evident in the mean streamlines and spanwise-vorticity contours. For
all three cases, and SC97, the dividing streamline of the bubble is characterised
by a near-wall ‘needle’ projecting upstream, while its most-downstream location
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FIGURE 7. (Colour online) (a) Skin friction Cf = τw/(1/2)ρU2
∞

and (b) fraction of
reversed wall shear γr: · · · · · ·, SC97; - - - - (blue), Case A; — · — (green), Case B;
—— (red), Case C. Horizontal lines in (b) denote γr = 0.50 threshold; vertical lines in
inset plots indicate Cf = 0 locations. The γr profiles in (b) have been locally averaged
in x.

indicates a significant wall-normal velocity into the reattachment point. (For Case A,
compare the Cf = 0 locations in figure 2, indicated by the vertical lines, with the
streamline emanating from and returning to the surface.) This fore–aft asymmetry in
bubble shape can also be observed, for example, in Na & Moin’s (1998), Skote &
Henningson’s (2002) and Raiesi et al.’s (2011) simulations.

We have left unanswered the question of whether or not one prominent feature of
many separated flows, namely a low-frequency ‘breathing’ oscillation (i.e. expansion
and contraction) of the bubble (e.g. Castro & Haque 1987; Weiss, Mohammed-Taifour
& Schwaab 2015), is present in the current configuration. The inability to consider the
breathing oscillation (which differs qualitatively from the somewhat higher-frequency
‘shedding’ motion, associated with the roll-up of spanwise vortices in the shear
layer above the bubble, found by Na & Moin (1998) and Weiss et al. (2015)) is a
consequence of limited computational resources: since the oscillation frequency in
question is apparently of the order 0.01U∞/Lb, where Lb is the bubble length (Weiss
et al. 2015), a sampling period of many multiples of 200Y/U∞ would be required
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FIGURE 8. (Colour online) Edge velocities and thicknesses: - - - -/@/p (blue), Case A;
— · —/A/q (green), Case B; ——/6/f (red), Case C. Open and closed symbols
correspond respectively to full separation (Cf = 0) and intermittent transitory detachment
(γr = 0.2) locations (the latter only in inset plot in e). Thinner curves in (a) are Utop =

u(x, Y). Left-hand-side inset plots in (b–e) (Case C): ×, Vinuesa et al. (2016) thicknesses
(adjusted to 99.5 % criterion), with δ∗ and θ defined in terms of mean velocity integrated
from y=0 to the δ995 given by the Vinuesa et al. (2016) formulation. Right-hand-side inset
plot in (e): ——, Kline, Bardina & Strawn (1983) model of high-Re quasi-equilibrium
PG boundary layers, h= 1.5 ξ ; — · · —, Sandborn & Kline (1961) intermittent transitory
detachment criterion, h = 1/(2 − ξ); �, Kline et al. (1983) Cf = 0 prediction, (ξ , h) =
(0.5, 0.75). Results have been locally averaged in x.

to capture it – much greater than the 187Y/U∞ utilised for Case A, 195Y/U∞
for Case B and especially 52Y/U∞ for Case C. It should be noted, however, that
the characteristics of the present DNS may a priori rule out any very-large-scale
oscillations. Either the ‘clean’ (spanwise periodic) geometry (involving no upstream
unsteadiness or side-wall wind-tunnel effects), the (steady) transpiration boundary
condition (which is imposed relatively close to the top of the turbulent layer near its
detachment) and/or the fringe treatment (which significantly reduces and ‘locks in’
the layer thickness at the in/outflow of the domain) may prevent the bubble length
from expanding/contracting as it does in less constrained or less idealised flows.

The scope of the boundary-layer thickening is also evident in figure 3(b), by
the significant difference between the variation of the pressure which would be
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42 G. N. Coleman, C. L. Rumsey and P. R. Spalart

associated with Vtop(x) in the absence of a boundary layer (thinner curves) and
that of the actual mean pressure at the wall, for all cases (the open symbols in
this figures correspond to the mean separation and reattachment locations). The
displacement (pressure-relieving) effect is such that the flow in the bubble is subject
to an approximately constant APG (note the difference between the present pattern,
namely strong-APG/weak-APG/strong-FPG, and the pattern of laminar separation
bubbles which is essentially weak-APG/ZPG/strong-APG). This point will be revisited
below, when we examine the Stratford scaling of the mean-velocity profiles in this
region. Separation occurs between Cp = 0.375 and 0.497, with the higher value
corresponding to more gradual APG, as one might expect.

Figure 7(a) shows the Reynolds-number Re dependence of the skin-friction
distribution Cf (x) (as well as the benefits of a larger streamwise domain, relative
to that used in SC97). This dependence includes the Cf reduction with increasing Re
in the ZPG regions, and especially the behaviour downstream of reattachment: the
local minimum toward the end of the FPG (near x/Y = 3) appears to be purely a
consequence of the rapid reversal of the pressure gradient. The local Cf maximum
in the FPG between reattachment and the start of the ZPG recovery correlates with
a local minimum of the fraction of reversed wall shear γr, before it recovers toward
the small but non-zero values found in the ZPG upstream of separation. We note that
this local γr minimum, along with the corresponding local Cf maximum, does not
appear in the higher-Re flow, Case C. Another observation, perhaps more relevant
to real-world applications, is that the percentage of reversed flow is never exactly
zero in the ZPG regions, where γr tends to increase with Reynolds number. This
behaviour (non-zero γr and its increase with Re in ZPG layers) was also observed by
Spalart (1988), who attributed it to the increasing ratio between the root-mean-square
fluctuations and the mean skin friction. In other words, infrequent instantaneous
reversal is not always an indication of impending separation. A final observation
regarding figure 7(b) is the very close agreement between the Cf = 0 and γr = 0.50
locations, both for separation and reattachment (inset plots).

The boundary-layer thicknesses are presented in figure 8. To accommodate the non-
zero ∂U/∂y (= ∂V/∂x) in the (irrotational) free-stream of pressure-gradient layers,
which defeats the definitions inherited from boundary-layer theory, we follow Lighthill
(1963) and define these integral quantities in terms of a ‘generalised velocity’

Ũ(x, y)≡−
∫ y

0
ωz(x, y′) dy′, (3.1)

such that the edge (of vorticity) velocity is

Ũe(x)≡ Ũ(x, y→∞), (3.2)

and δ̃995 at each x is the height at which Ũ/Ũe = 0.995. The corresponding
displacement and momentum thicknesses (Spalart & Watmuff 1993) are

δ̃∗(x)≡
−1

Ũe(x)

∫
∞

0
yωz(x, y) dy, (3.3)

and

θ̃ (x)≡
−2

[Ũe(x)]2

∫
∞

0
y Ũ(x, y) ωz(x, y) dy− δ̃∗(x). (3.4)
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Turbulent separation bubbles 43

The relationship between these thicknesses and the integrated momentum balance
is considered in appendix C. Note that in ZPG regions, where ωz → −∂u/∂y,
Ũ(x, y) reduces to u(x, y) and these vorticity-based parameters are equivalent to
the conventionally defined Ue, δ995, δ∗ and θ .

The difference between Ũe given by (3.2) and the mean streamwise velocity
along the top wall, Utop(x) = u(x, Y), is greatest for Case A (figure 8a). This is
a consequence of its very rapid dP/dx (i.e. more peaked transpiration profile). In
fact, dVtop/dx (= ∂u/∂y|y=Y) is so large for this case (and for SC97) that in the
irrotational region near the top wall it is associated with positive ∂u/∂y large enough
to effect a weak spurious acceleration, dUtop/dx > 0, in the APG region, where
dP/dx is positive along the bottom wall (figure 3b); compare thin- and thick-dashed
lines in figure 8(a). The Utop overshoot does not occur for Cases B and C, since
their transpiration profile is spread over a wider streamwise distance. Note that these
deviations from boundary-layer behaviour are not an issue when testing models in a
Navier–Stokes CFD code; on the other hand, some physical interpretations especially
of axis-dependent quantities such as the Reynolds shear stress demand care.

The 99.5 % boundary-layer thickness profiles in figure 8(b), defined by Ũ, are
essentially equivalent to those traced by the constant-ωz contour (not shown) that
passes through y= δ̃995 in the ZPG reference stations, until downstream of separation,
where opposite-signed ωz is introduced. The location at which the conventionally
defined displacement and momentum thicknesses (i.e. u-based integrals from y = 0
to Y; also not shown in figure 8) deviate from the corresponding vorticity-based
quantities corresponds to the stations beyond which the APG begins to affect the flow.
These end-of-ZPG locations (x/Y ≈ −8 for Case C) are close to those downstream
of which the pressure-related terms in the momentum balance are non-negligible
(cf. figure 17).

Another strategy to quantify the thickness δ of boundary layers in pressure gradients
involves the relationship between the streamwise Reynolds-stress and mean-velocity
profiles toward the upper edge of the layer. In light of Alfredsson, Segalini & Örlü’s
(2011) so-called ‘diagnostic plot’, modified (using the shape factor) to account for
non-zero pressure gradients (Drózdz, Elsner & Drobniak 2015), Vinuesa et al. (2016)
appeal to the apparent universal dependence of (

√

u′u′/(u
√
δ∗/θ) upon u/Uref as u

approaches Uref from below, where the reference velocity Uref (equivalent to the
free-stream velocity in ZPG layers) is the mean value just above the edge of the
turbulent layer. (Except at stations where the ωz profile is of two signs, Uref turns out
to be nearly the same as Ũe.) This dependence implicitly defines the boundary-layer
thickness and Uref , both of which, along with the displacement and momentum
thicknesses, can be computed via an iterative calculation. The 99.5 % and integral
thicknesses resulting from applying this procedure to the Case C statistics are shown
by the cross symbols in the inset plots in figure 8(b–e). The good agreement with
the vorticity-based thicknesses (3.1)–(3.4) is surprising and striking – especially since
the diagnostic-plot relationship has no known physical basis (Castro 2015).

The shape factor H= δ̃∗/θ̃ associated with separation for the three cases ranges from
2.7 to 3.25 (figure 8e). In some theories and calculation methods, Hsep is used as a
simple indicator. This is larger than the 1.86Hsep 6 2.4 cited by Cebeci & Bradshaw
(1977) but smaller than the Hsep= 4 proposed by Kline et al. (1983). The right-hand-
side inset plot in figure 8(e) presents the Kline et al. model in terms of h= (H− 1)/H
(which lies between 0 and 1) and the displacement/boundary-layer thickness ratio ξ =
δ∗/δ995; the closed and open symbols in this plot respectively correspond to Simpson’s
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44 G. N. Coleman, C. L. Rumsey and P. R. Spalart

(1980) ‘intermittent transitory detachment’ (defined as the γr= 0.2 location) – referred
to as ‘incipient detachment’ by Kline et al. (1983) – and full separation (Cf = 0)
from the three DNS solutions (in terms of δ̃995, δ̃∗ and θ̃ ). The DNS results are
fairly close to Kline et al.’s (1983) quasi-equilibrium model of attached and detached
pressure-gradient (PG) boundary layers (based on Cole’s (1956) classical log-law/wake
structure, modified to account for u2

τ 6 0 (see Kline et al.), and used to construct their
separation correlation), which at high Reynolds number is well approximated by h=
1.5 ξ (solid line). On the other hand, the DNS is well below the Kline et al. prediction
of full separation and especially intermittent transitory detachment, given respectively
by the Hsep = 4 location mentioned above, at ξsep = 0.5 and hsep = 0.75 (circle-dot
symbol), and by the intersection of the general quasi-equilibrium boundary-layer line
with the chain-double-dot curve (cf. Simpson 1989; Cheng et al. 2015). We thus find
that, in general, neither a critical Cp (recall figure 3b) nor an integral/shape-factor
threshold provide a particularly precise parameterisation of separation for the present
cases.

3.3. Mean-velocity profile evolution
The theme of this subsection is the search for – and deviation from – near-wall
similarity of the mean velocity in regions with non-zero pressure gradient, for
stations with both finite and zero mean skin friction.

The effect of the APG on the mean velocity in inner/wall units is shown in figure 9.
The velocity gradient ∂U/∂y outside the turbulent region is apparent. The present
results do not support the proposal that the ZPG log law will survive when the
maximum shear stress is less than 1.5 times the wall value (see stress profiles in
inset plots), or when the magnitude of p+ is less than 0.050 (denoted by + symbols
in figure 9a–c); see for example Simpson (1989) and Driver (1991). The deviation
from the (nominally) logarithmic ZPG profile depends upon the Reynolds number
and even more on the strength/duration of the APG. The controlling influence of the
pressure gradient is revealed by its effect upon the −u′v′ shear stress. The abrupt
deceleration imposed for Case A has little impact upon the shape of the −u′v′
profile (typical of ZPG conditions; see upper-left inset in figure 9a), since the wall
shear-stress reduction for this case has too little time to diffuse into the outer-layer
turbulence (and the magnitude and duration of the outer-layer ∂v/∂y strain are too
small to effect significant −u′v′ production; cf. Coleman, Kim & Spalart 2003) before
the mean skin friction changes sign, relative to the less-sudden APGs of Cases B and
C; contrast the fuller −u′v′ versus y/δ995 profiles in figure 9(b,c). These shear-stress
changes are accompanied by departures from the log profile of the mean velocity
that are quite general (rather than progressive; cf. Galbraith et al. 1977), roughly
beginning at a given y+ for each case, rather than a given y/δ, plausibly correlated
with the different values of p+. A visual inspection of these profiles could lead to the
interpretation that they still contain a logarithmic layer, but one with lower value of
the von Kármán constant κ . We resist such interpretations, not having any evidence
of these putative log layers lengthening with Reynolds number the way they do in
ZPG. This is a reminder of the difficulty in defining equivalent flows at different
Reynolds numbers when strong pressure gradients are at play. (Skote & Henningson
(2002) advocate an alternative perspective, and propose a log-law profile for both
attached and separated cases.)

The common practice of mapping the magnitude of U+ at y+ = 50 versus p+ to
quantify PG-induced deviations from the log law (see for example Johnstone et al.
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FIGURE 9. (Colour online) Mean-velocity profiles before separation, for y 6 Y .
(a) Case A: —— (dark), x/Y = −5(p+ = 0.000); - - - - (red), x/Y = −4(p+ = 0.000);
· · · · · · (green), x/Y = −3(p+ = 0.006); — · — (blue), x/Y = −2.4(p+ = 0.026);
+ (red), x/Y = −2.14(p+ = 0.050); — · · — (violet), x/Y = −2(p+ = 0.070);
– – – – (dark), x/Y = −1(p+ = 0.749). (b) Case B: —— (dark), x/Y = −8(p+ =
0.001); · · · · · · (red), x/Y = −7(p+ = 0.004); — · — (blue), x/Y = −6(p+ = 0.010);
— · · — (violet), x/Y =−5(p+= 0.026); + (red), x/Y =−4.28(p+= 0.050); – – – – (dark),
x/Y = −4(p+ = 0.065); E (blue), x/Y = −3(p+ = 0.211); p (green), x/Y = −2(p+ =
1.132). (c) Case C: —— (dark), x/Y = −9.5(p+ = 0.000); - - - - (red), x/Y = −8(p+ =
0.001); · · · · · · (green), x/Y = −7(p+ = 0.003); — · — (blue), x/Y = −6(p+ = 0.008);
— · · — (violet), x/Y = −5(p+ = 0.017); – – – – (dark), x/Y = −4(p+ = 0.043);
+ (red), x/Y = −3.84(p+ = 0.050); E (blue), x/Y = −3(p+ = 0.141); p (green), x/Y =
−2(p+ = 0.825). Inset plots in (a–c) contain −u′v′ shear-stress profiles, normalised by
local u2

τ = τw/ρ = ν (∂u/∂y)y=0.

2010) is nowadays complicated by the emerging consensus that a purely logarithmic
profile should not be expected, if at all, below y+ of a few hundred – Marusic
et al. (2013) propose y+ = 3

√
uτδ/ν as the minimum, which is about 80 at the ZPG
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FIGURE 10. (a,b) Mean-velocity profiles at (no symbols) separation and (symbols)
reattachment, (a) with respect to U∞ and Y , and (b) in Stratford scaling: - - - - (blue),
Case A; — · — (green), Case B; —— (red), Case C; · · · · · · (in b), Stratford’s (1959)
square-root-law U− = B

√
y− +C, with (B,C)= (2.5,−2.2) (Coleman et al. 2017), where

U− = U/up, y− = yup/ν and u3
p = νd(pwall/ρ)/dx. Inset plot in (b) contains −( u′v′ )− =

−u′v′/u2
p profiles: — · · — (dark), −( u′v′ )− = y− idealisation. (c–f ) Contours of (c)

B
√

y− + C, and local U− for Cases (d) A, (e) B and ( f ) C. Dark solid vertical lines in
(d–f ) indicate mean separation and reattachment stations. The Case C results have been
locally averaged in x.

reference station for Case C – to say nothing about the current uncertainty in the
value of κ , or the debate about its universality. We note that for Case C, opposite
impressions are given by the behaviour of U+ at y+ = 50 and at y+ = 100, initially
decreasing for the former and increasing for the latter. Despite these complications,
we shall see below that the log law tends to be at least as insensitive to pressure
gradients as other near-wall quantities such as the mixing length or eddy viscosity.

Figure 10 displays velocity profiles in the separated region, specifically at separation
and reattachment, for comparison with the scaling postulated by Stratford (1959)
(cf. Skote & Henningson 2002). From figure 10(a) we find that the profiles at the
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two points with zero mean skin friction do not have a universal shape when plotted
versus y/Y . A figure versus y/δ would bring them closer, but still, some have an
inflection point and others do not. In contrast, when drawn in ‘Stratford units’ y−
and U− (see figure 10 legend), the six profiles essentially collapse up to y−≈ 16, and
follow the square-root law beginning around y− ≈ 2. (Refer to Coleman et al. (2017)
for a discussion of why the y− values are not very large, compared with values in
the hundreds for the logarithmic law.) This is in spite of the fact that the −u′v′
profiles at Cf = 0 are not particularly close to the linear idealisation associated with
the Stratford conditions, although they are closer at reattachment (symbols) than at
separation (see inset plot in figure 10b).

Perhaps the most significant attribute of the collapse observed for the mean velocity
is that it is so well approximated by the square-root law with slope and intercept
coefficients taken from an independent DNS study in Couette–Poiseuille flow (using a
channel-flow code; Coleman et al. 2017). That flow has streamwise invariant statistics
and sustained zero skin friction in the x direction, in contrast with the present one, and
was deemed to give Stratford scaling and square-root behaviour a possibly atypical
chance of success (Stratford’s flow was different still, with sustained zero skin friction
but rapid boundary-layer growth in x). The scaling appears to be very robust, the flow
being dominated by the pressure gradient, which is the foundation of the Stratford
units in the absence of a friction velocity. Figure 10(d–f ) display contours of U− in
(x,
√

y−) axes, to compare with contours of the square-root law shown in figure 10(c).
They show that between separation and reattachment – where due to the displacement
effect, dP/dx is approximately constant (see figure 3b) – even though the negative
skin friction is not strong, the quantity U− deviates appreciably from the square-root
law, especially in Cases A and C. Thus, the law is valid strictly only at two locations.
Here as in the Couette–Poiseuille flow, we view this as a notable success of turbulence
theory.

The weakness of the backflow magnitude – for example, for Case C, at x/Y =−0.5
the minimum u is −0.004U∞ – is revealed by the fact that the near-wall mean-velocity
profiles in local wall units deviate from the linear U+ = y+ asymptote very close to
the wall, below y+ = 0.5 (cf. the corresponding profiles in figure 10 of Dianat &
Castro 1989, for a more-deeply separated case). Nevertheless, the present reverse-flow
profiles (not shown) are all reasonably well approximated by the expression proposed
by Simpson (1983), U/UN =A[y/N− ln(y/N)− 1] − 1 (where UN is the magnitude of
the maximum negative velocity and N the distance from the wall at which it is found),
provided A≈ 0.9 rather than Simpson’s original A= 0.3, or the A= 0.235 found by
Dianat & Castro (1989) to best fit their results (see also Dianat & Castro 1991). The
implications of this rather large variation for A regarding the validity and universality
of the UN scaling are at present not clear.

The recovery toward the ZPG state downstream of the bubble is documented in
figure 11, in terms of the mean velocity in local wall units. The present results
differ from those found by Castro & Epik (1998) downstream of their separation
bubble, in that rather than a monotonic approach from below, here there is an
overshoot in the log law for all three cases before the ZPG profile is recovered (cf.
Mohammed-Taifour 2017). (The shaded curves in figure 11a–c are from the ZPG
reference station, upstream of the bubble; figure 5a.) The source of this difference is
likely to be that in the Castro & Epik experiment the recovering (or more accurately,
developing) turbulent layer is initiated by a transitioning laminar separation bubble,
in contrast to the APG/FPG-induced turbulent separation of a well-developed ZPG
layer considered here. On the other hand, the DNS and the Castro & Epik experiment
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FIGURE 11. (Colour online) Mean-velocity profiles after reattachment, for y 6 Y .
(a) Case A: — · · — (dark), x/Y = 2(p+ = −0.029); — · — (purple), x/Y = 3(p+ =
−0.006); · · · · · · (blue), x/Y = 5(p+ = 0.000); - - - - (green), x/Y = 9(p+ = 0.000);
—— (red), x/Y = 11(p+ = 0.000; Rθ = 2360); —— (grey/shaded), x/Y =−5 (p+ = 0.000;
cf. figure 9a). (b) Case B: — · · — (dark), x/Y = 3(p+ = −0.039); — · — (purple),
x/Y = 5(p+ =−0.019); · · · · · · (blue), x/Y = 7(p+ =−0.004); - - - - (green), x/Y = 9(p+ =
−0.001); —— (red), x/Y = 11(p+ = −0.001; Rθ = 2145); —— (grey/shaded), x/Y =
−8 (p+ = 0.001; cf. figure 9b). (c) Case C: — · · — (dark), x/Y = 3(p+ = −0.031);
— · — (purple), x/Y = 5(p+=−0.013); · · · · · · (blue), x/Y = 7(p+=−0.0025); - - - - (red),
x/Y = 8.65(p+ = −0.001; Rθ = 4040); —— (grey/shaded), x/Y = −9.5 (p+ = 0.000;
cf. figure 9c). Profiles in (a–c) have been shifted five units in vertical scale above the
one upstream, plotted below it. Inset plots in (a–c) contain −u′v′ shear-stress profiles; total
stress τ/ρ = −u′v′ + ν ∂ u/∂y also shown in right-hand-side subplots, for ZPG-reference
and furthest-downstream stations (only).

are similar in that the inner/logarithmic (but not the outer/wake) region of a ZPG is
recovered about 10δr downstream of reattachment, where δr is the layer thickness at
reattachment. The solid lines in figure 11(a,b), and the dashed lines in figure 11(c) (i.e.
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the last stations unaffected by the outflow fringe for each case) correspond respectively
to (x− xr)/δr = 11.5 (A), 9.8 (B) and 9.1 (C), where xr is the reattachment location
(equal to 0.43Y for A, 0.21Y for B and 0.42Y for C), and δr is taken as δ̃995 at
x = xr (see figure 8b). Another common feature of the experiment and the DNS is
the very slow development of the outer region of the mean velocity: the outer-layer
Clauser parameter G = (2/Cf )

1/2(H − 1)/H at the furthest downstream ZPG stations
(x/Y = 12.5, 11 and 8.65, respectively, for Cases A, B and C) is G= 5.85, 5.2 and
5.0 – all well below the ZPG value of 6.8 found by Coles (1962). Castro & Epik
observed G= 5.9 at their farthest-downstream measuring station. They also found that
−u′v′/u2

τ recovers even more slowly than the outer-layer U+ does, and that it tends
to first settle to a level lower than the pure ZPG profile at comparable Reynolds
number, before it rises very slowly toward the latter. Comparable behaviour is seen
here, in that −u′v′/u2

τ at a given y/δ995 is significantly less at the final prefringe
locations than at the reference ZPG station from upstream (indicated in figure 11 by
the solid grey/shaded curves); see for example the pronounced ‘divot’ relative to the
ZPG profile in the Case B stress below y/δ995≈ 0.5, in the right-hand-side subplot in
figure 11(b). We conclude that in none of the three DNS cases does the layer reach
the canonical, fully ZPG, state before it leaves the domain. The eventual development
of a standard ZPG layer well upstream of the bubble, from the distorted/recovering
turbulence, is another reminder of the success of the fringe treatment.

3.4. TKE budget
In addition to information about the downstream development of the individual
terms in the TKE budget, which is offered as an aid to modellers attempting to
replicate this flow, the following results underline the importance of exercising care
when transferring concepts and intuition developed in thin shear layers to flows with
streamline divergence/convergence, even when it is relatively mild.

For all three cases, a local TKE maximum (in addition to the near-wall peak in the
ZPG layer) occurs in the region above the upstream portion of the mean separation
bubble. For Case C, the peak (which is nearly the same magnitude, in units of U2

∞
, as

the near-wall ZPG-reference value; cf. figure 6a) is directly above the mean separation
location, x/Y =−1.43 (figure 12a). This is in contrast to turbulent separation induced
by surface curvature, such as in the rounded-step flow studied by Bentaleb, Lardeau
& Leschziner (2012), where the TKE peak is larger (with respect to U2

∞
) and further

downstream. The TKE growth or decay along mean streamlines – and thus this
local maximum – is largely controlled by the imbalance between the production
Pk, dissipation εk and turbulent transport Tk terms. The velocity–pressure-gradient
correlation Πk is quite small except adjacent to the wall, where it acts as a source
(cf. figure 6b). (Recall however that the pressure term acts as a strong sink for the
Reynolds shear stress −u′v′ across the layer (Spalart 1988).) Our focus here will be
upon outer-layer regions.

The turbulent transport Tk (figure 12e) tends to spread TKE down the TKE
gradients, both toward and away from the wall. It makes a particularly important
contribution toward the outer edge of the turbulent layer, accounting for nearly all of
the positive Dk/Dt in the APG and especially FPG regions.

The evolution of the production term correlates with that of the x-component
normal Reynolds stress u′u′. For example, in the ∂u/∂x = S11 < 0 (APG) region,
Pk (= −(u′u′ − v′v′)S11 − 2u′v′ S12) grows as u′u′ does, and conversely in the
FPG region. The u′u′ component also contributes to a reduction in the −u′v′ stress,
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FIGURE 12. TKE budget for Case C: (a) TKE, k = (1/2)u′iu′i; (b) Dk/Dt = u ∂k/∂x +
v ∂k/∂y; (c) production rate, Pk = −u′iu′j∂ui/∂xj; (d) (minus) dissipation rate, −εk =

−ν(∂u′i/∂xj)(∂u′i∂xj); (e) turbulent transport, Tk =−(1/2)∂u′iu′iu′j/∂xj; ( f ) velocity–pressure-
gradient correlation, Πk =−(u′i/ρ)∂p′/∂xi. (In ZPG regions, extrema for Pk, −εk and Πk,
which lie outside the limits shown here, are located very near the wall; cf. figure 6, and
note that at x/Y = −9.5, y+ = 50 corresponds to y/Y = 0.014.) Black curves are mean
streamlines; solid white vertical lines indicate mean separation and reattachment stations.
White symbols denote 99.5 %-boundary-layer thickness δ̃995. Broken white curve in (a)
is mean dividing streamline of separation bubble. Broken lines in (c) trace contours of
Pk/εk = 1, 1.5 and 2, while grey/shaded regions in (c) correspond to Pk < 0 (minimum
value is −7×10−5). All terms computed directly, except Πk, which is inferred from budget
imbalance. TKE and budget terms respectively normalised by U2

∞
and U3

∞
/Y . Results have

been locally averaged in x.
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through the latter’s production, −P12 = u′u′ ∂v/∂x + v′v′ ∂u/∂y, coupled with the
present transpiration profile, with its negative dVtop/dx (figure 3a). For Case A, with
its sudden APG/FPG, |∂v/∂x| is large enough to produce negative −u′v′ in the outer
layer, which significantly reduces the TKE production there, via the −2u′v′ S12 term.
In SC97, Skote & Henningson (2002) and Abe et al. (2012) (but not for Case A),
this suppression was strong enough to yield a pocket of negative Pk in the outer layer,
above the separation bubble. (The negative Pk in the free-stream, above y= δ̃995, seen
in figure 12c is statistically insignificant.) For Cases B and C, with their more gradual
pressure gradients, −u′v′ is everywhere positive, and the −u′v′ < 0 excursion of Pk
does not occur (cf. figure 12c).

From the above, we see that the mean x-wise compression/expansion S11 provides a
direct/explicit contribution to Dk/Dt, through the presence of this strain component in
Pk. However, we are not considering a thin shear flow exactly aligned with the x axis.
This explicit dependence of the TKE production on the mean strain is more naturally
viewed in terms of the compression/expansion S∗11 = −S∗22 relative to Cartesian axes
(x∗1, x∗2)= (x∗, y∗) aligned with the local mean-velocity vector (u1, u2)= (u, v), with Pk
rewritten as = −(u′

∗
u′
∗
− v′

∗
v′
∗
)S∗11 − 2u′

∗
v′
∗

S∗12. (In these ‘starred’, local stream(line)-
wise coordinates, we have for example, that the streamwise rate of strain is S∗11 =

(u uS11 + 2u vS12 + v vS22)/(u u + v v) (recall S∗ij = LipLjqSpq, where Lij is the cosine
of the angle between the x∗i and xj axes), and the cross-stream x∗1–x∗2 Reynolds shear
stress is −u′

∗
v′
∗
=−((u u− v v)u′v′ − u v(u′u′ − v′v′))/(u u+ v v).) The shear stresses

referred to the two sets of axes are appreciably different even though the streamline
inclination is only of the order of 0.125 radians: compare figures 13(c) and 13(e).

In view of the large changes effected by dP/dx, it is somewhat surprising that
the magnitude of the ‘extra’ strain S∗11 (‘extra’ in the sense of being in addition
to the primary/cross-stream shear component S∗12; Bradshaw 1988) that it induces
is such a small fraction of the total (compare figures 13b with 13a and 13d). The
major influence of S∗11 is more indirect, as we shall now see. (The magnitude of
the streamline curvature, ∂v∗/∂x∗ (= (ωz + 2S∗12)/2), which is another of Bradshaw’s
extra strains, is even smaller than |S∗11| – to the point ∂v∗/∂x∗ would not register
when plotted using the contour levels employed in figure 13b. Evidently, although the
streamline inclination is not negligible – recall the large differences between −u′v′
and −u′

∗
v′
∗

observed above – its variation with x is rather weak.)
An example of an indirect effect of S∗11 is provided by the behaviour of the
−2u′

∗
v′
∗
S∗12 contribution to Pk. From figure 13(c,d) we find a tendency for the

streamwise increases associated with the two local maxima of the cross-stream stress
−u′
∗
v′
∗

to offset the general streamwise decrease of S∗12, such that their combination
to Pk produces a net decrease that is weaker than the streamwise evolution of S∗12
alone would imply. Concerning the latter, since the magnitude of S∗12 is quite close
to that of the streamwise vorticity ωz (not shown), which points to the dominance
of the cross-stream gradient of the mean streamwise velocity ∂u∗/∂y∗, the decrease
in S∗12 can be associated with the viscous and especially turbulent diffusion terms in
the ωz transport equation. These diffusion terms can be interpreted as further indirect
effects of the S∗11 = −S∗22 straining. As initially noted by Bradshaw (1988), these
types of indirect extra-strain effects are of greater importance than one might deduce
from information such as that shown in figure 13(b).

Regarding the rate-of-dissipation εk, the third of the major terms in the outer-layer
balance, we note the tendency for it to mitigate the production, with Pk/εk of order
one throughout the bulk of the layer (see broken-line contours in figure 12c). On the
other hand, the dissipation is observed to follow the mean streamlines (i.e. satisfy
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FIGURE 13. Case C contours of mean (a) strain rate
√

2SijSij, (b) stream(line)wise
strain rate

√
4S∗11S∗11, (c) cross-stream Reynolds shear stress −u′

∗
v′
∗
, (d) cross-stream strain

rate
√

4S∗12S∗12, (e) Reynolds shear stress −u′v′, ( f ) productive shear stress −u′v′prod =

Pk/
√

2SijSij, (g) turbulence stress–energy ratio −u′v′/k and (h) turbulence-to-mean energy
transfer efficiency a1,prod = (Pk/

√
2SijSij)/k. Quantities with ‘∗’ super- or subscripts are

defined with respect to local Cartesian coordinates (x∗1, x
∗

2), aligned with (x∗1) and normal to
(x∗2) mean streamlines (solid black curves). Solid white vertical lines mark mean separation
and reattachment stations. White symbols denote 99.5 %-boundary-layer thickness δ̃995.
Grey regions indicate values outside the colour bar range shown for each figure.
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Dεk/Dt ≈ 0) better than production does, especially downstream of reattachment
(compare the Pk/εk and Pk contours in figure 12c). This is not unexpected, εk
being dominated by the small scales of the turbulence and not directly impacted by
the pressure field. Accounting for this ‘drift’ of Pk across the streamlines into the
FPG outer layer, which is consistent with the rise of Pk/εk for x > 0, the present
behaviour aligns with the standard/Kolmogorov view of the energy cascade, in that
Pk < εk begins to fall along mean streamlines within the APG, just downstream of
the peak-TKE location – indicating the rate of dissipation is not immediately affected
by the reduced TKE at larger scales (cf. Abe et al. 2012).

Although it is convenient to consider the Reynolds stresses and TKE budget with
regard to the x–y, wall-parallel/wall-normal, coordinate system, this can produce
a partial and thus misleading picture, especially in regions far from the wall,
where streamline slope is not negligible, and even the streamline direction does
not necessarily give a rigorous ‘most relevant’ set of axes. We have already observed
the example provided by the significant differences between the Reynolds shear stress
in streamline axes, −u′

∗
v′
∗

(figure 13c) and in x–y axes, −u′v′ (figure 13e). A further
example is provided by what could be called the ‘effective’ or ‘productive’ stress
−u′v′prod, formulated in terms of the mean-to-turbulence energy transfer Pk, which
is independent of axes. Since the rate of TKE production represents the work done
against the mean-rate-of-strain field by the turbulent stresses, we define −u′v′prod as
the characteristic turbulent-shear-stress field given by the scalar ratio Pk/

√
2SijSij

(which in a parallel flow, with u= u(y), reduces to −u′v′). Figure 13(e, f ) implies that
−u′v′ and −u′v′prod are very different, to the point that their outer-layer maxima are
on the opposite sides of the bubble. (The −u′v′prod and −u′

∗
v′
∗

fields are qualitatively
similar, although not identical, especially downstream of reattachment; figure 13f,c.)
Moreover, the streamline slope does not have to be extreme for the differences to be
meaningful. This can be seen when examining the so-called Reynolds-stress structure
parameter, a1 = −u′v′/k (Bradshaw, Ferris & Atwell 1967). This stress/TKE ratio
can be interpreted as a measure of the ‘efficiency’ with which the turbulence alters
(transfers) the mean momentum (and energy) in a parallel flow. Figure 13(g) reveals
the frequently observed reduction of a1 in the APG region (Spalart & Watmuff
1993), which is typically assumed to imply a reduction in the efficiency of the
turbulence/mean transfer process (e.g. Coleman et al. 2003). (The stress/energy ratio
based on the Reynolds stress in streamline coordinates, a∗1 = −u′

∗
v′
∗
/k, also reveals

a downstream reduction, albeit one slower than for a1.) In fact, the productive
stress/energy ratio a1,prod = −u′v′prod/k (figure 13h) demonstrates the opposite, that
the effect of the APG is an increase of relative mean-to-turbulence energy transfer
– and that this increase is observed in regions where the streamline slope is quite
small. Also noteworthy is the ‘quiet zone of inefficiency’ above the bubble, where
a1,prod ≈ 0.2.

3.5. Pressure-gradient dependence of near-wall length scales
We now turn attention to the behaviour of various length scales associated with
near-wall turbulence, and in particular how they are affected by pressure gradient.
This exercise extends our work on turbulent Couette–Poiseuille (C–P) flow DNS, for
which one side is effectively an APG layer, the other effectively an FPG (Johnstone,
Coleman & Spalart 2010; Coleman, Garbaruk & Spalart 2015). There we found the
length scale defined by the logarithmic law tends to be less sensitive to wall-normal
shear-stress gradients than other alternatives. This line of thinking was initiated by
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Galbraith & Head (1975) and Galbraith et al. (1977). The question before us now
is the extent to which this parallel-flow observation also holds for the spatially
developing case. The implications for turbulence modelling and theory are significant.

For context, recall that one finds in the literature at least three conjectured
relationships between the wall-normal derivative of the mean velocity dU/dy and
the primary shear stress −u′v′, the two quantities at the core of turbulence modelling
in unidirectional flows. Based on the assumption of a constant-stress (‘pure Couette’)
region, and presented in terms of length scales, to allow direct comparisons, these
relationships include the one leading to the logarithmic law of the wall for the
velocity, namely

`U =
uτ

dU/dy
= κy, (3.5)

where κ is again the von Kármán constant and uτ =
√
τw/ρ the wall friction velocity.

In terms of eddy viscosity νt ≡−u′v′/(dU/dy), we also have

`νt =
νt

uτ
=
−u′v′/uτ
dU/dy

= κy, (3.6)

while consideration of the mixing length `t ≡ (νt/(dU/dy))1/2 gives

`t =

√
−u′v′

dU/dy
= κy. (3.7)

Yet another scale can be based on the rate of TKE production (Coleman et al. 2015),

`P =
u3
τ

−u′v′dU/dy
= κy. (3.8)

The four formulae differ by various powers of the ratio −u′v′/u2
τ . Since −u′v′= u2

τ

in a constant-stress layer outside the viscous region, all four expressions are equivalent
under pure Couette conditions (see figure 4 in Johnstone et al. 2010). None of the four
has a systematic derivation. (See Skote & Wallin (2016) for a review of current wall-
damping functions, and an attempt to generalise them into a single model applicable
to decelerating and separated flows.) With pressure gradient, −u′v′ deviates from u2

τ ,
even outside the viscous buffer layer, and the proposals conflict, so that at best one
of the four will remain effective. The four will produce a ‘fan’ of results in the order
(3.8)–(3.5)–(3.7)–(3.6): that is, `P < `U < `t < `νt for APG, and `P > `U > `t > `νt

for FPG (or, in terms of `U, (−u′v′/u2
τ )
−1`U ≷ `U ≷ (−u′v′/u2

τ )
1/2`U ≷ (−u′v′/u2

τ )`U.)
This behaviour is confirmed in figure 14, which presents (3.5)–(3.8) for Case C at
representative stations (with dU/dy replaced by local ∂u/∂y), in that `νt and `P are the
largest, respectively, in the APG and FPG regions. (For reference, the solid symbol in
figure 14 denotes the local 0.15δ̃995 location, the height below which one might expect
classical inertial sublayer relations to hold; cf. Marusic et al. 2013.) As required, the
ordering is indeed tied to the magnitude of the −u′v′/u2

τ ratio (see shear-stress inset
plots in figures 9 and 11).

Because −u′v′/u2
τ 6 1 at the ZPG station, unlike for pure Couette flow, there is

a discernible difference between the length scales here. Figure 14(a) reveals a mild
form of the expected FPG ordering (`P maximum, `νt minimum) for the Case C ZPG
reference state. An even larger difference with respect to the parallel C–P geometry –
for which, on both the APG and FPG sides, `U is least sensitive to dP/dx and agrees
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FIGURE 14. (Colour online) Length scale variation for Case C at (a) x/Y = −9.5, (b)
x/Y = −7, (c) x/Y = −5, (d) x/Y = 5, (e) x/Y = 7 and ( f ) x/Y = 8.65: ——, κy, for
κ = 0.38 and 0.41; p, y+ = 0.15 uτ δ̃995/ν; — · — (red), `U; — · · — (green), `νt ;
- - - - (blue), `t; · · · · · · (violet), `P . Vertical lines in (wall-pressure) inset plots indicate
streamwise station to which data in main plot correspond.

most closely with the κy idealisation (Johnstone et al. 2010; Coleman et al. 2015) –
is that for the present flow the ‘winner’ regarding PG independence is not as clear
(and is not `P , despite the hints found in Spalart (1988), as described in Coleman
et al. (2015)). The prevailing uncertainty over the value of κ has essentially no impact
on the comparisons. (Neither does the use of the coordinate-dependent/parallel-flow
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definitions in (3.5)–(3.8): utilising the TKE-production-based quantities mentioned
above instead – representing `U by −uτ/ωz or uτ/(2SijSij)

1/2, `νt by Pk/(2SijSijuτ ),
`t by P1/2

k /(2SijSij)
3/2 and `P by u3

τ/Pk – has no effect on the ordering observed
in figure 14, and in fact slightly amplifies the pressure-gradient dependence of
all but `U.) Nevertheless, since at most of the stations the length scale fan tends
to overlap most of the κy target below the 0.15δ̃995 limit, and since `U and `t
always lie within the ‘core’ of the fan, a case can be made that the log-law and
mixing-length scales are more resilient to pressure gradients than the other two
options. We also note the importance of the (upstream) flow history in the hysteresis
between the APG and FPG regions, in the tendency for the lengths to depart from
κy at higher y+ (and especially y/δ995) under an adverse gradient than under a FPG
of comparable (in fact slightly weaker) magnitude, measured in local wall units
(compare figures 14c and 14d). At x/Y = 5, long after reattachment, the deviations
are still strong, well below y = 0.15δ̃995. At the final station, quasi-ZPG conditions
are again apparent, with slightly more pronounced FPG ordering, due to the sub-ZPG
levels of −u′v′/u2

τ mentioned in § 3.3. To appreciate the significance of these findings
for RANS modelling, we note that algebraic models explicitly containing `νt or `t
such as Cebeci–Smith or Baldwin–Lomax are no longer in general use, but that
wall functions based on `U are in use, and also that some transport-equation models
(including Spalart–Allmaras) contain terms related to `t.

4. RANS model testing
RANS solutions were computed for Case C, in an effort to explore and discern

differences between RANS and DNS, as well as between RANS solutions that used
different turbulence models. A similar study has been done by Raiesi et al. (2011),
using LES at a comparable Reynolds number, but a somewhat more abrupt pressure
gradient, than for Case C; their a posteriori RANS tests differ from those done here
in that they chose to match the skin friction, rather than momentum thickness, in
the upstream ZPG region. This case is also similar to the axisymmetric separated-
boundary-layer experiment of Driver (1991) (coincidentally also labelled ‘Case C’).
The experiment and results from various RANS turbulence models can be found on
the TMR website.

4.1. RANS grid and numerical details
Results were computed with the code CFL3D (Krist, Biedron & Rumsey 1998),
developed at NASA. CFL3D is a multi-zone compressible RANS code that employs
grid sequencing and multigrid to accelerate convergence to steady state. It is a
finite-volume method, and uses third-order upwind-biased spatial differencing on the
convective and pressure terms and second-order differencing on the viscous terms; it
is globally second-order spatially accurate. The flux difference-splitting (FDS) method
of Roe (1981) is employed to obtain fluxes at the cell faces. CFL3D is advanced
in time via backward Euler, with an implicit three-factor approximate factorisation
method. The turbulence equations are solved by default with a first-order advection
scheme, although second-order is also available.

There are many RANS turbulence models available in CFL3D. For this work,
we used Baldwin–Lomax (BL) (Baldwin & Lomax 1978), Spalart–Allmaras (SA)
(Spalart & Allmaras 1994), Spalart–Allmaras with rotation-curvature correction
(SARC) (Shur et al. 2000), the ‘AB’ k–ε model of Abid (k–ε) (Abid 1993), Menter’s
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shear-stress transport k–ω (SST) (Menter 1994) and the SSG/LRR-RSM-w2012
(Speziale–Sarkar–Gatski/Launder–Reece–Rodi differential Reynolds-stress model)
Reynolds-stress transport (RST) (Eisfeld, Rumsey & Togiti 2016). Because of the
relatively low Reynolds number of this flow, we also used modified forms of SA and
SARC, termed low-Re SA and low-Re SARC, respectively. These are the same as
the original models, with the exception that the coefficient Cw2 has been increased
from 0.3 to 1.0. This change yields somewhat higher skin friction for the ZPG flow
leading up to separation. The original models were calibrated for higher Re, and they
tend to underpredict flat-plate skin friction when Re is very low. Increasing Cw2 in
SA increases the slope of fw with respect to r ≡ νt/(κ

2y2∂u/∂y) at r = 1 (i.e. in the
log region, where νt = κuτy and ∂u/∂y= uτ/κy), such that the SA destruction term is
diminished in the outer layer, where r< 1 (see figure 3 of Spalart & Allmaras 1994).
Consequently, the total mixing across the layer, via enhanced νt, increases, leading to
higher skin friction.

The turbulence models are not described in detail here; the reader is referred
to the original references for their equations. In terms of a general overview, BL
is an algebraic model that sees very little usage today (except by the hypersonics
community). It is included here because it provides an example of poor results with
far too early separation (the model, however, has the opposite trend for shock-induced
separation). Similarly, k–ε is not widely used for aerodynamic flows because of its
poor characteristics, particularly for flows with APG. Here, it is included because it
provides an opposite example of poor results with no separation. The other models,
SA, SARC, SST and RST, are all considered state-of-the-art RANS models by today’s
aerodynamics community. SA and SARC are one-equation transport models, SST is
a two-equation transport model, and RST is a seven-equation transport model.

The fine grid size was 721 × 513. Medium grid size was 361 × 257 (every other
point of the fine grid in each coordinate direction). The grid extended from x/Y =
−12.15 (upstream) to x/Y = 10.65 (downstream). The top-wall boundary was located
at y/Y = 1. Minimum normal spacing at the bottom wall was 1y/Y = 8× 10−5 (fine
grid) and 1y/Y= 16× 10−5 (medium grid), corresponding to an average 1y+ over the
entire plate of approximately 1y+= 0.2 and 0.4, respectively. Solutions computed on
both grids yielded only very minor differences in results. For example, the maximum
change in separation or reattachment location for any model was less than 0.2Y , with
maximum change in bubble length of approximately 0.3Y , or less than 2 %. Therefore,
medium grids were used for the solutions shown here.

The reference (ZPG free-stream) Mach number was M= 0.1, and Reynolds number
based on the reference velocity and height Y) was Re = 80 000, to agree with
Case C. The top-wall condition was set by (2.2a–c), with v(x, Y) = Vtop(x) and
∂u/∂y|x,Y = dVtop/dx|x, using the Case C transpiration parameters (table 1). All other
mean-flow and turbulence variables had zero wall-normal gradient at y = Y . The
streamwise location at which Vtop changes from suction to blowing was adjusted for
each model such that, at 9.5Y upstream of the suction/blowing-transition station (in
the ZPG region), the momentum thickness agreed with that from Case C at x=−9.5Y
(i.e. θ̃/Y = 0.022; see figure 15a). For all but BL, the inflow boundary condition (BC)
was set by the Case C DNS profiles of effective eddy viscosity (see below), TKE
and/or Reynolds stresses at x/Y = −12.15. (For example, for k–ε, k was assigned
to the DNS TKE and ε inferred from that k and the DNS eddy viscosity; for SA,
ν̃ was computed from the νt = fv1(ν̃/ν) relation with the left-hand side set to the
DNS quantity; etc.) The BL run was allowed to develop from a laminar state far
upstream, such that its momentum thickness also matched the DNS at x/Y = −9.5.
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FIGURE 15. (Colour online) RANS predictions of (a) momentum thickness, (b) mean wall
pressure and (c) skin friction for Case C. RANS models include BL (Baldwin & Lomax
1978), SA (Spalart & Allmaras 1994), low-Re SA (SA with Cw2 = 1.0), SARC (SA with
rotation/curvature correction; Shur et al. 2000), low-Re SARC (SARC with Cw2=1.0), k–ε
(model ‘AB’ of Abid 1993), SST (Menter 1994) and RST (Reynolds-stress-transport model
of Eisfeld et al. 2016). Wall-pressure coefficient in (b) relative to pwall at x/Y=−9.5. DNS
results have been locally averaged in x.

Non-dimensional density was specified to be 1, and pressure was extrapolated from
the interior of the domain. The outflow BC set back pressure at p/pref = 1.00026, and
extrapolated other variables from the interior. This value of back pressure allowed
the inflow Mach number to closely approximate the reference value (M = 0.1).
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Turbulent separation bubbles 59

4.2. RANS results

RANS results for θ̃ , Cp, and Cf are shown in figure 15, with the eight different
turbulence models compared to the DNS. By design, the RANS θ̃ levels approaching
separation agree well with the DNS (and thus with each other), but then the RANS
results start to separate from each other near x/Y =−3.

The SST, RST and SA models follow the DNS data most closely, and the BL
model has the largest error. For Cp, there is less visible deviation, with the two forms
of SARC and the low-Re SA yielding the poorest agreement with DNS. Curiously,
these models give among the largest θ and the most positive pressure; usually, due to
displacement effects the trends are opposite, but here the models yield mean profiles
with unusually small δ∗ in the separation zone.

For Cf , the standard RANS model results tend to be slightly low compared to DNS
in the ZPG region. This underprediction is a result of the low Reynolds number; as
mentioned earlier, the RANS models are calibrated for significantly higher Reynolds
numbers. The low-Re versions of SA and SARC were used to alleviate this deficiency
in the approach flow. As shown, these two models match the DNS extremely well in
this region.

Two models stand out as being particularly poor for predicting the separated flow:
BL predicts separation too early, and k–ε predicts fully attached flow (as did another
version of k–ε tested by Raiesi et al. (2011)). All other turbulence models produce
fairly consistent results in terms of the separation location, near x/Y = −2.5. This
separation location is somewhat early compared to DNS (with separation near x/Y =
−1.4). These findings are consistent with those found from RANS tests in a parallel-
flow idealisation of APG-induced separation (based on the DNS results of Coleman
et al. (2003)), presented in Yorke & Coleman (2004) and Sciberras & Coleman (2007),
in that BL separated too early, (another version of) k–ε not at all, and the separation
predictions of SA, SST and two of three RST closures were very similar, with a
tendency to be slightly too early.

The near-uniformity of RANS in prediction of separation location is somewhat
surprising, considering the large differences in their eddy-viscosity fields, to be
shown below, and in the structures of the various models. For the skin friction to be
less sensitive than the thickness and wall pressure was also not expected.

Most models reattach between 0.5 < x/Y < 0.9 (for a total separation bubble
length near 3Y or more, which is too long compared to the DNS bubble length of
approximately 1.85Y). RST and low-Re SARC predict the shortest bubble lengths of
approximately 2Y , in better agreement with the DNS length, but the separation and
reattachment locations are both too early.

The most definite deviations of Cf from the DNS are well after reattachment,
near x/Y = 5, nearing the end of the strong FPG. For x/Y between 4 and 5, the
DNS distribution has a marked reduction in slope, which all models miss before
matching the DNS again around x/Y = 8. Again, the models cluster together even
when deviating from the reference. This is a lesson in turbulence modelling: a not
uncommon strategy, when concerned about the modelling errors, is to try a few
models in an attempt to gauge the sensitivity of the flow. The present results show
that a large number of models that can be viewed as meaningfully different from
each other can err in the same manner.

Logarithmic contour plots of total, molecular µm plus turbulent µt, viscosity, in units
of µm, are shown in figure 16, using a logarithmic scale for y, to better display near-
wall behaviour. For the DNS, an ‘effective’ eddy viscosity is defined in terms of the
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FIGURE 16. Effective and modelled eddy viscosity for Case C: (a) DNS; (b) BL (Baldwin
& Lomax 1978); (c) SA with Cw2 = 1.0; (d) SARC (Shur et al. 2000); (e) SARC
with Cw2 = 1.0; ( f ) k–ε (Abid 1993); (g) SST (Menter 1994); (h) RST (Eisfeld et al.
2016). Quantity shown is the (base-10) logarithm of νt/ν + 1. Note logarithmic scale of
vertical axis. White solid vertical lines indicate mean separation and reattachment stations;
white symbols denote 99.5 %-boundary-layer thickness δ̃995. Grey/shaded regions in (a)
correspond to νt,eff < 0, and broken white curve in (a) is mean dividing streamline of
separation bubble; DNS results have been locally averaged in x.
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rates of TKE production Pk =−u′iu′jSij and mean strain Sij= (1/2)(∂ui/∂xj+ ∂uj/∂xi)
as:

µt,eff =
ρPk

2S2
, (4.1)

where S =
√

SijSij. This equation (which was also employed by Raiesi et al. (2011)
and Abe et al. (2012) in their analysis of their separation-bubble simulations) follows
directly from the use of the Boussinesq approximation in the definition of Pk, for an
incompressible flow. It also corresponds to a least-squares fit of the Reynolds-stress
tensor by a scalar eddy viscosity. Unlike other physical quantities, such as the TKE
and its rate of dissipation – which in general can be quite different from the modelling
variable bearing the same name – the rate of TKE production represents the direct
effect of the turbulence upon the mean flow that the model is aiming to capture. Our
premise is that comparisons of eddy viscosity from each model with the Pk-based
µt,eff (4.1) from the DNS will give helpful local indications for improvement of the
models.

The DNS graph indicates that a peak in non-dimensional eddy viscosity occurs
above the separation bubble, with a level near 150. Then, a subsequent peak occurs
well downstream, with a somewhat higher level near 250.

Above log10(y/Y)≈−1.5 (i.e. y/Y ≈ 0.03), the various RANS model eddy viscosity
results vary widely. The SARC and low-Re SARC are closest to the DNS in this
region, both in terms of levels and in the fact that a second peak occurs downstream
of the bubble. This is not consistent with the thickness and pressure distributions,
which were worse for the two SARC versions. The SA, SST, and RST models all
produce only one peak, which is much stronger than in the DNS, and also occurs
downstream of reattachment. The eddy viscosity from k–ε appears to be qualitatively
similar to RST, which produced the highest peak value. Considering SA, SARC,
SST and RST, it is at first surprising that such widely varying eddy viscosity levels
all predict very similar separation locations. But looking closer to the wall (below
log10(y/Y)≈−1.5), we find these four models produced very similar eddy viscosities
upstream of separation. (We were prompted to examine the near-wall behaviour by
Professor P. Durbin.) Only two were conspicuously different: BL had higher near-wall
values, and k–ε had the wrong slope in x. Therefore, the separation location appears
to be mostly controlled by the near-wall levels of µt leading up to it. We also note
that, near the wall for the region [−5, 0], the modelled eddy viscosity develops a
triangle with very weak values, apparently following streamlines in accordance with
their transport equations, but the DNS eddy viscosity does not. This is observed even
after correcting for the different location of flow reversal.

Three other tests were performed. First, the (smoothed-in-x) Reynolds-stress
components −u′iu′j from the DNS were interpolated and frozen in the RANS code.
In this case, when the mean flow was solved, near-perfect agreement with the
DNS skin-friction coefficient was achieved, as shown in the left-hand subfigure of
figure 15(c) (broken-line curve). This demonstrates the accuracy of the stress fields,
the consistency of the boundary conditions used in the DNS and RANS, and the
validity of the spatial resolution used for the RANS.

In a second test, the (smoothed-in-x) mean DNS velocities u(x, y) and v(x, y) were
interpolated onto the RANS grid and held constant, while the various turbulence
models were solved iteratively to convergence using this ‘frozen’ mean-flow field in
the model’s transport and constitutive equations (bypassing the RANS momentum
equation). Resulting eddy-viscosity contours from this exercise were similar to those
shown in figure 16, albeit with somewhat large magnitudes. In other words, the
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RANS turbulence model fields do not change much as the result of imposition of the
‘exact’ DNS mean field.

Then, in a third test, the (smoothed-in-x) effective eddy viscosity field from the
DNS was extrapolated to the RANS grid and frozen, and then the RANS mean flow
was solved iteratively to convergence with the same boundary conditions. In this case,
the predicted skin friction was poor, separating too late (with a very small bubble
length) and exhibiting significant oscillations just prior to separation. This result is
shown as dark star symbols in the top-left inset of figure 15(c). Oscillations can be
blamed on a lack of smoothness in the DNS eddy viscosity, but its definition is in
any case powerless to correct the Boussinesq approximation, so that the anisotropy of
the Reynolds-stress tensor remains incorrect.

These RANS exercises unfortunately leave important questions unanswered.
Apparently, the effective-eddy-viscosity field directly from DNS is not adequate for
producing meaningful RANS results. At this time, we do not know if this inadequacy
is due to the fact that a linear eddy viscosity is insufficient, and nonlinear terms
are also required, or if the ‘least-squares fit’ operation to obtain an effective eddy
viscosity is too crude an approximation. Future research efforts, first with nonlinear
eddy-viscosity models, may try to address this issue. Another noteworthy result is
that indications given by the eddy viscosity in figure 16 in the outer region are not
reflected in the same direction by the wall pressure and skin friction. We do not
know how to explain this behaviour, other than by reasoning that in the outer region
the momentum equation is dominated by the pressure field. And finally, although
the tendency for many of today’s most widely used turbulence models to yield such
similar results for separation appears to be mostly due to the models’ similar near-wall
behaviour, the effects of their very different behaviour away from the wall are not as
clear. Comparison with the DNS effective eddy viscosity appears to suggest that the
SARC model should be clearly better than other models, but when it comes to Cf

predictions, it is not.

5. Summary and closing comments

DNS of a small family of separation bubbles were conducted, with emphasis on
enlarging the domain, providing unquestionable boundary conditions and fully deve-
loped inflow states, varying the pressure gradient and raising the Reynolds number, all
relative to a 1997 study. The database (available from https://turbmodels.larc.nasa.gov)
is expected to allow rigorous comparisons with other DNS, LES and RANS results,
and to guide turbulence theory as well as RANS modelling; concrete tests of a fair
number of such models are included here. With non-trivial flow histories, it is not
obvious how to isolate ‘Reynolds-number effects’, and a plausible approach based
on extrapolating from the zero-pressure-gradient inflow region to the centre of the
bubble was established. Discussions of the deviation of the flow from boundary-layer
approximations are presented, and different definitions of the boundary-layer
thicknesses are explored. Direction-invariant definitions of the ‘structure parameter’
(ratio of turbulent shear stress to turbulent kinetic energy) are proposed and found
to differ noticeably from the x–y-linked definition. The manner in which the velocity
profiles and other relevant length scales of the turbulence deviate from the law of
the wall in favourable and relaxing pressure gradient is displayed. An unexpected
finding is that the velocity profiles exactly at zero crossings of the skin friction satisfy
Stratford’s law based on local wall-pressure gradient and the square-root dependence,
with the constants established separately in Couette–Poiseuille flow; this aspect of
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turbulence theory is quite successful, and this could guide RANS-model validation.
Overall, the body of knowledge derived from the DNS appears substantial and rather
clear.

The findings for RANS modelling, in contrast, have puzzling aspects, and further
thinking is needed. An effective eddy viscosity was extracted from the DNS fields, so
as to provide a concrete and local target for the models. The exercise succeeded in
the sense that the different models gave widely different eddy-viscosity distributions
away from the near-wall region, with one of them coming much closer to the DNS
result, presumably by capturing streamline curvature effects. It failed in the sense
that with a few exceptions RANS results for wall quantities remained fairly clustered,
even when they deviated appreciably from the reference. This made sense for the
prediction of separation location, due to the models behaving similarly very near
the wall leading up to it. But large variations in eddy viscosity further from the
wall should imply much larger behavioural differences, which were not obvious.
Note that the models did not all belong to a narrow class: they had one or two
equations for eddy viscosity, or seven equations for the Reynolds stresses. This
rules out simple explanations such as the models sharing a ‘structure’ in a deep
way, although statements of this nature contain much opinion. It also serves as a
warning against leaning too heavily upon the multiple-model-sensitivity tests often
used in CFD, since a wide range of model types failed to bracket the target (in this
case the point of mean separation and post-reattachment skin-friction development),
and in fact converged to a common erroneous result. Curiously, although the RST
model did predict a shorter separation extent than the others (in better agreement
with the DNS benchmark), its overall eddy-viscosity field deviated further from
the DNS than the SARC model, whose results were generally worse. A version
of this latter model was adjusted in a simple-minded manner to better match the
skin friction of the DNS in the region of zero pressure gradient. The reasoning was
that residual low-Reynolds-number effects were not captured by any of the models.
However, the result was that although this altered model matched DNS effective eddy
viscosity reasonably well, it had worse results in the separation bubble, especially
when combined with the curvature-corrected model. The response of the pressure
distribution was the opposite of reasonable expectations. This suggests that even
current computing power is not sufficient to remove low-Reynolds-number biases, but
also that our understanding of even the simplest and most familiar of RANS models
in even moderately complex situations is shallow.

Our short-term plans for DNS are to add a component of velocity in the z
direction, with the same boundary conditions in the x–y plane, as a simple way
to introduce sweep into the physics of the separation bubble. The expected failure of
the ‘Independence Principle’, due to turbulence, will be quantified. We also speculate
that swept separated flows may be somewhat easier to predict than two-dimensional
separated flows for turbulence models, and a partial answer to this conjecture can
be given. The intense concern of the aerodynamics community over the prediction
of separation justifies sustained and coordinated DNS, experimental, theoretical and
modelling efforts.
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Appendix A. Fringe-zone boundary conditions
To accommodate the mean streamwise variation of a spatially developing turbulent

layer in a streamwise periodic domain, the governing equations are modified by adding
a velocity field U2 to the solution that is active just downstream of the entrance,
and just upstream of the exit to the domain (Spalart & Watmuff 1993, SC97; § 2.1).
This field acts as a mass sink that reduces the mean layer thickness; unlike in SC97,
it also damps the turbulence, to prevent any large-scale structures generated by the
detached shear layer above/downstream of the bubble from re-entering the domain, and
corrupting the outer layer of the canonical ZPG state. The wall-normal variation of the
fringe treatment has also changed from an exponential to the hyperbolic-tangent form
shown below.

Letting U2 = q, the streamwise q1, wall-normal q2 and spanwise q3 components of
the fringe field are written

qi =

(
−V2δ2i tanh

[(
y
yα

)2
]
−Υ · (ui − 〈ui〉) tanh

[(
y
yβ

)2
])
· F(x), (A 1)

where V2 is the magnitude of the ‘mean pulldown’ velocity, δij is the Kronecker delta,
Υ is the (non-dimensional) fluctuation-damping coefficient, yα and yβ are wall-normal
length scales, ui and 〈ui〉 are respectively the total and spanwise mean (kz = 0 mode)
of U1 +U3; F(x) is the fringe-activation function,

F(x)= exp

(
−

(
x− xin

x1

)4
)
+ exp

(
−

(
x− xin −Λx

x1

)4
)
, (A 2)

where xin is the x-coordinate of the inflow station (see table 2) and x1 sets the
streamwise extent of the fringe zone. The values used for each of these parameters
(which were determined by experimentation) for Cases A–C are given in table 3.

x1/Y V2/U∞ yα/Y Υ yβ/Y

1.0 1.5 0.518 2.0 0.16

TABLE 3. Fringe parameters.

Another fringe-related issue is the modification required to the top-wall transpiration
profile Vtop(x), required to maintain zero net mass flux across the y= Y plane. This
is accomplished by injecting mass into the fringe zones to counteract the constant
extraction (‘bleed’) velocity in (2.1), by replacing ϕtop with ϕtop ·G(x), where

G(x)= 1−
Λx

x1
√

π

[
exp

(
−

(
x− xin

x1

)2
)
+ exp

(
−

(
x− xin −Λx

x1

)2
)]

. (A 3)
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Appendix B. Transpiration boundary condition
This appendix, which summarises the virtual upper-wall transpiration boundary

condition used in the DNS, is a simplified alternative to the fuller treatment presented
in SC97. As is true of U1, the boundary-condition field U3 is both divergence-free
and satisfies the no-slip condition at y = 0; it is also irrotational everywhere except
for a layer of finite vorticity concentrated near the lower wall (required to satisfy
the no-slip condition), of negligible magnitude compared to that of the computational
variable, ∇ × U1. (The length scale y2 (see SC97) that defines the thickness of the
near-wall vorticity of U3 is y2/Y = 0.02 for each of Cases A, B and C.)

We begin by recalling that the spectral DNS domain extends in the wall-normal
direction from the no-slip wall at y = 0 into the irrotational free-stream as y→∞
(Spalart et al. 1991). The transpiration profile Vtop(x) is then prescribed along a
virtual wall at y= Y by defining the Fourier transform in x and z of U3(x, y, z) such
that, in irrotational regions, the spanwise mean (i.e. kz = 0 modes) of its streamwise
û3(kx, y, kz) and wall-normal v̂3(kx, y, kz) components are given by

û3(kx, y, 0)= iV̂top(kx) cosh(kxy)/sinh(kxY) (B 1)

and
v̂3(kx, y, 0)= V̂top(kx) sinh(kxy)/sinh(kxY), (B 2)

where V̂top(kx) is the Fourier transform of Vtop(x) and kx is the streamwise component
of the wavevector k = (kx, kz). (Non-zero kz modes also contribute to U3; see SC97.
The irrotational (large-y) kz= 0 form shown in (B 1) and (B 2) is being considered in
order to reveal the mean behaviour along y= Y .) Notice that (B 1) and (B 2) satisfy
the divergence-free and irrotationality conditions by construction. Equation (B 2) also
ensures that in regions where v1 is inactive (as occurs at y = Y , when this height
is well above the boundary-layer turbulence) and away from the fringe regions (such
that q2 is negligible), the desired transpiration profile is obtained, since the spanwise
(and therefore the time) mean of the vertical velocity v satisfies v(x, Y) = Vtop(x).
The possibility that the vortical component U1 is non-negligible at y= Y , should the
boundary-layer thickness become large relative to Y (as it does at some stations for
the present cases) is accounted for in the general formulation in SC97. The case with
U1= 0 at y= Y is examined here since it provides a straightforward illustration of the
method’s properties.

In addition to imposing the desired transpiration profile (2.1) at y=Y , U3 defines an
effective irrotational/inviscid ‘slip’ velocity Uslip, by the y= 0 limit of (B 1), which is
associated with a Gaussian-like inviscid static-pressure variation along the wall. This
follows, first, from the fact that V̂top ∝ i sinh(kxY) û3(kx, 0, 0), which implies Uslip ∝∫

x Vtop dx, and, second, that Vtop(x) has been defined as the derivative of a Gaussian;
see figure 3(a,b).

Appendix C. Momentum integral balance
The mean integral-momentum balance for Case C is shown in figure 17(a), in

terms of the thicknesses associated with the control volume from the surface to the
transpiration plane at y= Y , such that integrating from the inflow station at xin to an
arbitrary x gives

θ1(x)+ θ2(x)+ θ3(x)+ θ4(x)+ θ5(x)=
∫ x

xin

1
2

Cf (x́) dx́, (C 1)
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FIGURE 17. (Colour online) Integrated momentum balance for Case C. (a) Full balance,
y ∈ [0, Y] control volume: — · — (dark), θ1; · · · · · · (blue), θ2; - - - - (green), θ3;
× (green), θ4; — · · — (violet), θ5; —— (red), θ1 + θ2 + θ3 + θ4 + θ5; E (cyan),∫
(1/2)Cf dx (shifted). (b) Boundary-layer approximation: — · — (dark), (1 − Cp,wall) θ̃ ;
· · · · · · (blue), −

∫
(1/2)δ̃∗ dCp,wall; —— (red), (1 − Cp,wall) θ̃ −

∫
(1/2)δ̃∗ dCp,wall;

- - - - (blue), (1 − Cp,wall) θ̃ −
∫
(1/2)δ̃∗ dCp,wall + θ5; E (cyan),

∫
(1/2)Cf dx (shifted).

Shaded/grey curves and symbols repeat results from (a). Vertical lines in (a,b) denote
separation and reattachment locations. Grey/shaded regions indicate fringe zones. Term
involving momentum thickness θ̃ in (b) was locally averaged in x.

where

θ1(x)≡ θU(x)
(

Utop(x)
U∞

)2

with θU(x)≡
∫ Y

0

(
u(x, y)
Utop(x)

)(
1−

u(x, y)
Utop(x)

)
dy, (C 2)

and

θ2(x)≡
∫ Utop(x)

Utop(xin)

1
2
δ∗U

(
dÚ2

top

U2
∞

)
with δ∗U(x)≡

∫ Y

0

(
1−

u(x, y)
Utop(x)

)
dy. (C 3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

25
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

AS
A 

La
ng

le
y 

Re
se

ar
ch

 C
en

te
r,

 o
n 

20
 Ju

n 
20

19
 a

t 2
0:

44
:2

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.257
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Turbulent separation bubbles 67

The third term measures the deviation of the mean pressure from the top-wall value
at each x,

θ3(x)≡
∫ Y

0
[(Ptop(x)− p(x, y))/ρU2

∞
] dy, (C 4)

while the fourth assesses the combination of (i) the stagnation-pressure loss along the
top wall relative to the reference state and (ii) the deviation from one of the boundary-
layer approximations, namely V2

top�U2
top:

θ4(x)≡ [P0|∞ − P0|top(x)+ (1/2)ρV2
top(x)]Y/ρU2

∞
, (C 5)

where P0|∞ = P∞ + (1/2)ρU2
∞

, P∞ is the reference static pressure (at the U∞
location), P0|top = Ptop + (1/2)ρU2

top + (1/2)ρV2
top and Ptop(x) = p(x, Y). (Note that

under isentropic/constant-P0 conditions, θ4 = (1/2)V2
topY/U2

∞
.) The explicit effect of

the turbulence is quantified by the streamwise Reynolds-stress term

θ5(x)≡−
∫ Y

0
(u′u′(x, y)/U2

∞
) dy. (C 6)

The rationale for these definitions is as follows, and aimed at generalising the von
Kármán momentum equation as written within boundary-layer theory: θ1 is the
momentum deficit, and θ2 the pressure-gradient term, containing the displacement
thickness; θ3 and θ4 are zero and θ5 neglected when the boundary-layer assumptions
are satisfied, but non-negligible here due to the flow turning and developing non-zero
∂u/∂y in the irrotational region (since the control volume extends to y= Y).

The good agreement at each x (away from the fringe zones, where the momentum
sink is active) between the sum of the left-hand-side terms and the right-hand side
of (C 1) displayed in figure 17(a) reflects well on the quality of the Case C statistics.
The balance is as good or better for the other two cases.

The end of the ZPG/beginning of the APG region at x/Y ≈−9 is characterised by
the divergence of θ1 from the accumulated skin friction, as the pressure-deviation term
θ3 begins to have an influence. Further downstream, near x/Y =−6, the displacement
θ2 and stagnation-pressure θ4 contributions become active, near the location at
which the streamwise Reynolds stress begins to make a small but not insignificant
contribution. (The insignificance of the stagnation-pressure loss along y = Y is
reflected in the near-equivalence of (1/2)V2

topY/U2
∞

with θ4; compare figure 3a and
cross symbols in figure 17a.) The size of θ3, the pressure-deviation integral thickness,
suggests rather large wall-normal mean pressure gradients, presumably related to
mean streamline divergence and/or curvature – which raises the prospect of the
breakdown of the boundary-layer approximations surprisingly early in the APG
layer’s development.

Under the boundary-layer assumptions, θ1 is replaced by (1 − Cp,wall) θ and θ2 by
−
∫
(1/2)δ∗ dCp,wall, with θ3= θ4= θ5=0. This form is shown in figure 17(b), using the

vorticity-based displacement and momentum thicknesses (3.3) and (3.4); the balance
is better than the size of the non-ZPG terms in figure 17(a) might suggest. In fact,
the agreement between the sum of the two boundary-layer-approximation terms and
the integrated skin friction is quite reasonable, especially when the Reynolds-stress
contribution θ5 is included (dashed curve). The implication – in addition to the need
to account for the streamwise Reynolds stresses to fully close the budget – is that
the large ∂p/∂y implied by the behaviour of θ3 in figure 17(a) is associated with the
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irrotational flow above the boundary-layer turbulence. (Recall that the displacement
and momentum thicknesses used in the boundary-layer-approximation balance in
figure 17b are defined solely by the mean spanwise vorticity within the layer.) This
is underlined by the tendency for (1 − Cp,wall) θ̃ to remain significantly smaller
than θ1 well into the APG, and that in this region θ1 and θ3 tend to offset each
other. To conclude, it appears necessary to distinguish as many as five components
in the ‘extended’ momentum thickness, as we did in (C 1), to account for the
non-boundary-layer effects; however, the momentum balance of the DNS is then very
accurate.
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