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1965 1975 1985 1995 2005 2015

Apollo 1
1/27/1967

Apollo 13
4/14/1970

The EMU Fire
9/15/1980

MIR Fire
2/24/1997

Cygnus CRS Orb-3
10/28/2014

Aerospace Fire History
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Oxygen Compatibility
• Additive Manufacturing (AM) is currently and will continue to be, 

used in oxygen systems
• Compatibility studies are a necessity 
• Risks if not pursued

– Equipment Damage, Loss of Mission, Loss of Life
• NASA Centers of Excellence leading efforts

– White Sands Test Facility (WSTF) 
• Oxygen Compatibility Testing

– Marshall Space Flight Center (MSFC)
• Additive Manufacturing

– Glenn Research Center
• Metals characterization 

– NASA Engineering Safety Center (NESC)
• Statistical Design of Experiments
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We must manage the risks…

Oxidizer

Maximize more 
compatible materials

Minimize ignition
mechanisms

Utilize good practices

• What generates heat in
my system?

• Control or eliminate

• Ignition resistant
• Burn resistant
• Low damage

potential

• Implement all aspects of 
oxygen system safety

Oxygen 
Compatibility
Assessment
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Maximize 
• Testing determines AM flammability performance

• Note: Flammability is configurationally dependent, not a 
material property.

• NASA-STD-6001B Test 17/ ASTM G124
– Upward flammability test
– 1/8-in. diameter x 6-in. long
– Unheated
– Static Pressure
– >99.5% Oxygen
– Magnesium/Pyrofuse Promoter
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Preliminary Flammability Testing
• Experiment conducted between:

– Wrought Inconel 718 
– Selective Laser Melting (SLM) Inconel 718 (IN718)

• Statistically designed, efficient, and randomized
• Test specimens manufactured at MSFC
• Material flammability differences noted

– Result statistically significant but counterintuitive
• SLM IN718 post-build processes need investigation

– Stress relief (SR)
– Hot isostatic pressing (HIP)
– Solutionizing and aging heat treatments (HT)
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Preliminary Flammability Results

Printed, HT, no HIP Printed, HIP, and HT Wrought and HT

• SLM IN718 with/without HIP vs Wrought
• All materials had AMS 5664 HT
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Various Nb Precipitate Formation
As-Printed/HT HIP/HT Wrought/HT
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Axial Burning Interface of HIP Sample
Gravity
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Composite Energy-Dispersive Spectroscopy (EDS)

Bulk Material (BM)

Re-Solidified Zone (RSZ)

Oxide (O)Gravity
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EDS Mapping of Individual Elements
Reference Image Ni O

Nb Ti Al
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Reference Image

EDS Mapping of Individual Elements

• Scavenging of flammable constituents in RSZ
– Cr, Al, Ti, Nb (interesting segregation)

• Concentration of non/less flammable constituents 
in RSZ 
– Ni

• Fe remained distributed in BM, RSZ, and O 
Zones

Cr Fe
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Flammability Study - Ongoing
• SLM IN718
• Replicate and expand experiment
• Print parts in same build
• Synchronously SR and HT 
• Factors

– HIP (with/without)
– Effect of HIP temperature excursion

• Performed in vacuum furnace
• Furnace cool vs. quench

– AMS 5664 HT (with/without)
– Location on build plate
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FY
16

 M
at

rix

Process Cooling Rate From 
Process

Heat Treatment Sample Numbers

Printing N/A None 13,25,36,37,52,58,80,91
Printing N/A AMS 5664 (Sol/Age) 20,21,30,45,63,72,78,95

Hot Isostatic Pressing Furnace Cool None 12,16,39,50,53,62,79,84
Hot Isostatic Pressing Furnace Cool AMS 5664 (Sol/Age) 18,23,46,49,56,60,81,85

Vacuum HIP (HIP Heating 
profile no pressure)

Furnace Cool None 3,8,32,47,57,64,94,98

Vacuum HIP (HIP Heating 
profile no pressure)

Furnace Cool AMS 5664 (Sol/Age) 19,24,44,48,74,75,76,92

Vacuum HIP (HIP Heating 
profile no pressure)

Gas Quench None 1,4,29,33,59,61,83,87

Vacuum HIP (HIP Heating 
profile no pressure)

Gas Quench AMS 5664 (Sol/Age) 15,17,26,35,55,71,90,100
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FY16 Experiment Results

• None of process factors studied in the FY16 experiment have a 
statistically significant effect on flammability performance. 

• Pressure only significant factor for all treatments.
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Comparison to Previous Experiment

17

Experiment #2

Experiment #1
B

ur
n 

Le
ng

th
 (c

m
)

Test Pressure (psi)

• Significant difference in performance between HIP #1 and HIP #2
• Data from preliminary test and second test show comparable data 

quality
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AMSII Flammability Summary
• Additive Manufacturing Structural Integrity Initiative (AMSII)

– Included flammability performance

• Factors 
– 18 different Inconel 718 powders (HIP Wrap, Full HT)

• Covariates
– Zone
– Powder production method
– Machined vs as printed
– Green State
– Chemical composition
– Virgin vs recycled powder

• Findings 
– Different powders had significant differences in flammability at constant 

pressure.
– Composition may matter

• TiN volume fraction may influence flammability
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AMSII 2 Summary
• Factors

– Second lot of 5 AMSII 1 powders
– HIP Wrap vs No Wrap
– Machined vs Not Machined

• Covariates
– Composition
– Lot to lot comparisons

• Findings
– Lots and composition probably matter… a lot… 

• Regression model selection with AMSII 1&2 data
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Direct Comparison between AMSII 1&2
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AMSII 2 Material G-2

• Apparent interaction with wrapping during HIP and 
machining. Did we catch first experiment observation?
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Regression Model Selection- Composition

Type III Sums of Squares
Source Sum of Squares Df Mean Square F-Ratio P-Value
Mo 2.39042 1 2.39042 5.18 0.0404
C 5.73464 1 5.73464 12.43 0.0037
TiN VF 19.0101 1 19.0101 41.21 0.0000
R-Squared (adjusted for d.f.) = 82.3814 percent
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• All HIP wrapped, all full HT, for all 
AMSII 1 & 2 data.

• Three factors (TiN volume fraction, 
Carbon, and Molybdenum) describe 
~80% of flammability response.

• TiN and C seem to heavily 
influence flammability.

– Possible NbC and TiN tie up 
flammable alloying consituents.

– Appear to account for 80% of 
flammability in IN718.

– DISCLAMER: Data mining caveat. 
Covariate analysis is not as robust 
as a designed experiment.

• Mo may be tied up in carbides 
as well…

Flammability Model
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Future Flammability Work
• Perform additional materials characterization on 

tested samples
– Determine if Nb in transition region is still tied up as NbC

• See if material G2-2 reveals HIP observation
• Independently verify identified flammability factors

– Design orthogonal experiment to understand composition 
TiN and C effects on flammability.

• Characterize flammability performance of more 
common AM materials and build methods

• Publishing papers on current AM flammability 
findings to date in ASTM STP

• Reach out to computational materials experts for 
help modeling flammability of alloys.

• Test more materials and factors…
• Help to advance state of the art materials for 

performance in severe oxygen service.
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Minimize
• Particle Impact 

– Most common direct igniter of metals 
– Hazards increase with:

• Pressure, temperature, velocity, flammable particles
– SLM Components shed metal particles (Lowrey 2016)

Subsonic Supersonic
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Ignition Study
• Subsonic & Supersonic Impacts on SLM IN718

– Pressures, temperatures, velocities
• Study effect of AM characteristics on ignition sensitivity
• Factors

• Wrought vs. SLM
• Presence or lack of hot isostatic pressing (HIP)
• Heat treatment (AMS 5664 vs. Annealing)
• Surface preparation (chemical etching, electropolishing, electric discharge 

machining, mechanical polishing, rough machined surface)
• Particulate type (Aluminum, IN718 powder, Sapphire)
• Particle Velocity (Subsonic, Supersonic)
• Temperature (300-950 °F)
• Pressure (1,300 psia-4000 psia)

1000 μm

Mounting Material

SLM IN718
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Selected Supersonic Testing Results

• SLM samples that received HIP and electro polishing lost less 
mass than HIP samples with either mechanical polishing or 
chemical etching when impacted.

• SLM HIP samples lost significantly more mass than samples 
that were not HIP when impacted.

• Heat treatment and annealing was not observed to affect the 
ignitability of any Inconel 718 sample type.
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• Results of a 30 test supersonic PI surface preparation experiment using only SLM IN718 
comparing surface treatment and HIP at a static pressure of 1300 psia, and an average 
temperature of 562° F, and a single 2000 µm aluminum ball.
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• Even without ignition, SLM samples lost more mass than 
wrought samples. 

• This is likely due to particle silting from the SLM samples during 
exposure to high flow even after aqueous cleaning.

• SLM powder is highly flammable. When contained in the 
subsonic particle injector, the powder ignited before injection 
into the heated flowing gas.

Selected Subsonic Testing Results
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AM feed stock is extremely flammable…
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Future Ignition Work

• Replicate results of previous experiment.
• More fully characterize factors affecting ignition in AM 

materials.
• Perform testing on more AM aerospace materials.
• Perform ignition testing at a component level.
• Quantify representative contamination likely to be 

generated from SLM components.
– Perform particle impact tests with representative 

contamination quantaties.
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Utilize
• AM production

– Dedicated machine(s) for each material
– Prevent cross contamination

• Precision cleaning
– What is the best method.

• AM component/system design 
recommendations specific to oxygen 
systems.

• Assembly 
• Operations
• Maintenance
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Long-Term Goals
• Identify and characterize major factors that effect AM ignitability 

and flammability. Including modeling.
• Test more representative aerospace AM metals and methods.
• Test additional ignition mechanisms.

– Friction, cavitation
• Develop guide for the use of AM in oxygen systems 

– Design
– Manufacturing
– Cleaning
– Assembly
– Operations
– Maintenance 
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Questions?
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Back Up
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Scatter plot for log(Burn Length) and TiN VF
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