

Wesley Li

wesley.w.li@nasa.gov

Aerostructures Branch

NASA Armstrong Flight Research Center Edwards, CA

Outline

- X-57 Maxwell Overview
- Structural Design
- Static Structural Analysis and Airworthiness
 - Mod II
 - Mod III
 - Mod IV
- Aeroelasticity

X-57 Maxwell Overview

Mod	SRR	Preliminary Design	PDR	Detailed Design	CDR	Hardware Fabrication	System Integrati	on and testing	Flight Testing	Complete
I										
II		Y	15 40) ۲	(16 40	ב			Y20 2Q	
Ш				γ	(17 10	2			V21 20	
IV		Y	/19 10	ג					121 30	

Goals:

- Establish Baseline Tecnam Performance
- Pilot Familiarity

X-57 Participating Organizations

TMC Technologies of West Virginia Joby NASA Langley: Vehicle, Wing, Performance, NASA GRC Controls IPTs NASA Armstrong: Power, Instrumentation IPTs, Flight Ops NASA Glenn: Battery Testing, Thermal Analysis, HL Motor Controller Development (Mod IV) Empirical Sys. Aero.: Prime contractor Scaled Composites: Mod II Integration (batteries, motors, controllers, cockpit) NASA LaRC Joby Aviation: Mod II Cruise Motor & ESAero NASA AFRC Controller development Tecnam Electric Xperimental: Wing design and Power manufacturing Systems Electric Power Sys.: Battery development Scaled **Xperimental** TMC Technologies: Software V&V Composites Tecnam: Baseline COTS airframe without engines

Italy

Structural Design/Analysis Roles

- Responsibility:
 - Provide structural design requirements and airworthiness approach (AFRC)
 - Oversight for all structural design/analyses (AFRC & LaRC)
 - Conduct airworthiness design reviews (AFRC)
 - Support structural ground and flight testing (AFRC)
- AFRC and Flight Safety Review Board have final technical authority
- ESAero is the Prime contractor and has lead role in structural design and analysis

Mod II

- Scaled Composite design, analysis and integration (batteries, motors, controllers, cockpit)
- Joby Aviation the Cruise Motor structural design and analysis

Mod III

- Xperimental LLC has lead role in Mod III/IV wing design and analyses
- Wing IPT (AFRC & LaRC) provides verification and oversight for wing design/analyses

Mod IV

- ESAero high-lift system (blade, hub and tail nacelle) structural design and analysis
- GRC heat sink design and analysis
- Zone 5/Trust Automation high-lift motor and nacelle structures design and analysis

X-57 Structural Design Criteria

- X-57 Wing will be designed for MTOW 3000 lbs (Tecnam P2006 MTOW is 2712 lbs)
 - To prevent overloading the wing and fuselage structure, maneuver load factor and landing load factor will be limited
- The primary structures are designed to meet the X-57 loads requirements
 - Mod II: Cruise motor, new motor mount and its supporting structure, battery mount, floor structure, equipment support structure and fuselage
 - Mod III: Composite wing and wing/fuselage attachment
 - Mod IV: High-Lift assembly structure
- Aircraft Structural Safety of Flight Guidelines AFRC G-7123.1-001 along with industry standards is being use as a guideline
 - 2.25 FS for metallic structures if structural design is verified by analysis only
 - 3.00 FS for composite structures if structural design is verified by analysis only (when using well established composite processes and materials)
 - 1.80 FS for either metallic or composite structure when verified by proof tests to 120% of flight limit loads
- All structure MUST have positive Margin(s) of Safety

Composite Structures Verification and Validation (V&V) Process

NASA

- Building-block approaches for testing and analysis
- Contractors provide their composite cure process, process specification, and process control for AFRC review and approve
- The coupon testing and verification requirements have to negotiate with project management regarding risk and budget

X-57 Airworthiness Approach

• M	lod		
-----	-----	--	--

Ultimate Factors of Safety for Mod II					
Metallic structures - verified by analysis only					
Composite structures - verified by analysis only					
Existing primary and original structures					
Non-primary structures and no structural analysis – verified by proof test	N/A				

•	Mod	
•	Mod	

	Ultimate Factors of Safety for Mod III Wing				
Mod III Wing: metallic or composite structure					
 Verified by proof tests to 120% of flight limit loads 					
	Instrumented for loads monitoring during envelope expansion				
	Control surface system and linkage: Metallic structures – verified by analysis only	2.25			

Mod IV

Ultimate Factors of Safety for Mod IV HL System					
Metallic structures if structural design is verified by analysis only	2.25				
Composite structures - verified by analysis only					
Hub, Blade retention structures - verified by proof tests to 200% of max centrifugal load.	>2.0				

X-57 Mod II

Ultimate Factors of Safety for Mod II					
Metallic structures - verified by analysis only					
Composite structures - verified by analysis only					
Existing primary and original structures					
Non-primary structures and no structural analysis – verified by proof test	N/A				

Mod II Loads Requirements

Design Limit New met

- Due to the max gross weight increased, Mod II maneuver limit load factor will be reduced and limited to 3.4g
- The primary structures are designed for
 - Flight Maneuver and Ground loads
 - Emergence landing / Crash Loads: The items of mass within cabin that could injure an occupant, will be secured to fuselage structure to withstand the 18g cash loads conditions.
- Cruise Motor, Motor Mount and Nacelle/Pylon are designed for
 - Flight Maneuver and Ground loads
 - Powerplant loads (Thrust, Torque, P-factor, and Gyroscopic)

	Docign Limit	Factor of S		
	Load Eactor (g)	New metallic	Exiting	Condition
	Loau Factor (g)	structure	structure	
Down, Nz	3.4	2.25	1.5	Maneuver loads
Forward, Nx	-18	1	1	Crash loads
Sideward, Ny	+/-4.5	1	1	Crash loads
Up, Nz	-6	1	1	Crash loads
	B · · · ·	Factor of S	afety	
	Design Limit	Factor of S New metallic	afety Exiting	Condition
	Design Limit Load Factor (g)	Factor of S New metallic structure	afety Exiting structure	Condition
Down, Nz	Design Limit Load Factor (g) 3.4	Factor of S New metallic structure 2.25	Exiting structure 1.5	Condition Maneuver loads
Down, Nz Forward, Nx	Design Limit Load Factor (g) 3.4 -3	Factor of S New metallic structure 2.25 2.25	Exiting structure 1.5 1.5	Condition Maneuver loads Maneuver loads
Down, Nz Forward, Nx Sideward, Ny	Design Limit Load Factor (g) 3.4 -3 -1.33	Factor of S New metallic structure 2.25 2.25 2.25 2.25	Exiting structure 1.5 1.5 1.5	Condition Maneuver loads Maneuver loads Maneuver loads

Cruise Motor Design and Analysis

Design Loads

- Flight maneuver loads
- Ground & landing loads
- Powerplant loads (applied at the propeller CG
 - Max thrust
 - Max torque ٠
 - P-factor loads
 - Gyroscopic loads

Stator:

Cruise motor structure

Modal analysis: First Bending Mode 154Hz – 9240 RPM

AIAA Aviation 2019

Mod II Motor Mount Design

Design Loads

- Flight maneuver loads
- Ground & landing loads
- Powerplant loads
 - Max thrust
 - Max torque
 - P-factor loads
 - Gyroscopic loads

Motor Mount and Truss

FEM Analysis Static, Buckling, and Modal analysis **7**

Strain Gages Instrumentation

Motor mount loads calibration test

Integration (Top View)

X-57 Battery Integration

Design Loads

- Flight maneuver loads
- Crash loads

Fwd Battery Mount

Aft (Cargo) Battery Mount

Battery Venting

Battery Venting (3" dia) Hermetically seals battery smoke/eject from cabin volume

Adapter

Tube

X-57 Aircraft Modification

Secondary Egress

Cockpit Display

Air Data Boom 100600-01

Air Data Probe

Nose Fit

(Proof test 100%)

Bulkhead Fitting

June 17-21, 2019

Upgraded 4-point harness

Per AC21-34 SHOULDER HARNESS - SAFETY BELT INSTALLATIONS & AC 43.13-2B Ch 9 SHOULDER HARNESS INSTALLATIONS:

AIAA Aviation 2019

X-57 Mod III

Ultimate Factors of Safety for Mod III Wing						
Mod III Wing: metallic or composite structure						
Verified by proof tests to 120% of flight limit loads						
 Instrumented for loads monitoring during envelope expansion 						
Control surface system and linkage: Metallic structures – verified by analysis only	2.25					

X-57 Wing Design

- Designed and Fabricated by Xperimental
- Composite: semi-monocoque wing
- Single and continuous main spar: responsible to carry normal and axial loads (shear and bending)
- Working skin: buckling free and responsible to carry torsional loads
- Front and rear spars used to receive external loads (nacelles and controls)

X-57 Wing Loads Analysis

Cruise (Mod III/IV)

(Mod III/IV) Flap 30° With HL Power

(Mod IV)

261.5

104.6

Flap 30° No HL Power

- Total 20 load cases
- Flight loads
 - Maneuver load factor (+3.42 / -1.37g)
 - Asymmetric thrust at takeoff and at cruise —
- Ground loads
- **Powerplant** loads
 - Max cruise and High-Lift motor thrust and torque —
 - P-factor and Gyroscopic loads _

C-LIFT = -0.65-

Vs = 143 KEAS

VG = 167 KEAS

Ve = 152 KEAS C-lift = 0.57 Sref. = 66.67 s.f.

1542

0

Vs = 89 KEAS

4044 81mm

No Flat

Vs2 = 73 KEAS Flaps Only

Vs1 = 58 KEAS Lift Motors & Flaps

Se spews uvering speed speed, level flight, max. cont wer exceed speed

164

+2.5 13351N

Case #	Airspee	d	Load Factor	Weight	CG position	Altitude		Descript	ion
1	89kEAS ((Vs) +1.0		13351N	4044.81mm	Oft	Vs – 1g ASL		
2	152kEAS(Vc)	+2.91	13351N	4044.81mm	Oft	Vc max nz due stall ASL		ASL
3	164kEAS(Va)	+3.42	13351N	4044.81mm	Oft	Va – po	Va – positive maneuver ASL	
4	190kEAS(Vd)	+3.42	13351N	4044.81mm	Oft	Vd – po	Vd – positive maneuver ASL	
5	190kEAS(Vd)	-1.71	13351N	4044.81mm	Oft	Vd – ne	gative gust /	ASL
6	89kEAS (Vs)	+1.0	13351N	4044.81mm	15000ft	Vs – 1g	Vs – 1g high altitude	
7	152kEAS(Vc)	+2.91	13351N	4044.81mm	15000ft	Vc max	Vc max nz due stall high alt.	
8	164kEAS(Va)	+3.42	13351N	4044.81mm	15000ft	Va – po	Va – positive maneuver high all	
9	190kEAS(Vd)	+3.42	13351N	4044.81mm	15000ft	Vd – positive maneuver high		ver high alt
10	190kEAS(Vd)	-1.71	13351N	4044.81mm	15000ft	Vd – negative gust high alt.		nigh alt.
11	164kEAS(Va)	+2.99	13351N	4044.81mm	Oft	Asym –	Asym – 100/75	
12	164kEAS(Va)	+2.28	13351N	4044.81mm	Oft	Rolling	at Va	
13	164kEAS(Va)	+2.28	13351N	4044.81mm	Oft	Rolling	at Va – max	roll rate
14	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	at Vd	
15	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	at Vd – max	roll rate
16	130kEAS	Vf)	+2.00	13351N	4044.81mm	Oft	Flap		
Case #	Airspeed	Load	Weight	CG position	Alt	Fx	Mx	Му	Mz
17	164	+2.565	13351N	4044.81mm	Oft	1927	376.25	0	0
18	164	+3.42	13351N	4044.81mm	Oft	1400	318.75	0	0

Of

AIAA Aviation 2019

X-57 Wing Structures Airworthiness Approa

X-57 Wing Testing

- Proof and loads calibration testing
 - Will be conducted at AFRC in August 2019
 - Qualification test the wing structure to 120% Design Limit Load (DLL)
 - Qualification test cruise motor mount hard points to 120% DLL (axial in-plane)
 - Produce a database suitable for deriving wing load equations by applying a set of known loads and recording strain gage outputs
 - Verify the control surfaces (flaps and ailerons) are free of binding while the wings are loaded to 100% DLL.
 - Collect wing deflection measurement data for FEM model comparison and model tuning
- Ground Vibration Test (GVT)
 - Wing on proof test fixture
 - Identify the structural modes and the associated mode shapes as well as frequency and damping values of the wing before the integrated aircraft GVT

AIAA Aviation 2019

Fuselage Wing Attachment Structural Analysis

- Asymmetric thrust at take-off load case is the critical load case for the fuselage wing attachment.
- Require new wing attachment and new doubler
- Existing fuselage FS set at 1.5, same as Tecnam FS
- All new hardware FS set at 2.25 (no-test)

June 17-21, 2019

X-57 Mod IV

Ultimate Factors of Safety for Mod IV HL System					
Metallic structures if structural design is verified by analysis only					
Composite structures - verified by analysis only					
Hub, Blade retention structures - verified by proof tests to 200% of max centrifugal load.					

Mod IV High Lift Concept Overview

HL Exploded View

Blade

• PDR completed in April, 2019

Folding Propellers

Blades fold back and

"stow" onto Nacelle

- Design Loads (Inertial, Thrust, Torque, Imbalance, P-factor, Gyroscopic, etc)
- Decoupled from motor operational dwell frequencies: 5460 RPM / 91 Hz.
- To avoid coupling with wing flutter modes

Rear Suppor

HL Tail Nacelle

Prop

Mod IV Airworthiness Approach

- Design and Analysis
 - 2.25 FS (for metallic) and 3.0 FS (for composite).
- Hub, Blade Retention, and Counterweight Proof Test Per 14 CFR 35.35(a)(b)(c) and AC 35-1
 - Proof test for a period of one hour to 200% maximum expected centrifugal load at max rpm operation
- Acceptance Testing
 - Each hub, blade retention system, and counterweights: proof test to 120% operational loads limits for 2 times of a normal flight operation hour (Whirl testing)
 - Each motor assembly: proof test to 120% of operational loads limits for 2 times of a normal flight operation hour
- Endurance/Fatigue Testing
 - HL assembly: test for 4 times the expected operation lifespan to the operational loads
- Periodic Inspections during flight operations

Aeroelasticity

Aeroelasticity: Airworthiness Approach

- Finite Element Model (FEM) development
 - Structural and Aero models
- Flutter analyses
 - Whirl Flutter: propeller/hub/motor/pylon assembly mounted to wing
 - Classical Vehicle Flutter: Bending/Torsion coupling
- Ground Vibration Test (GVT) to measure natural modes, frequencies and structural damping
 - Correlate structural model for final flutter analyses
 - Conduct multiple GVTs (prop & hub, wing on proof test fixture, wing on fit-check fuselage) to reduce project risk by not waiting for the integrated aircraft GVT
- Flight flutter testing for envelope clearance
 - Instrumentation distribution on aircraft
- Control room monitoring June 17-21, 2019

Component GVT

Example: Cruise Prop/Hub GVT on Foam Soft Support

Wing on Proof Test Fixture GVT

Thank You

X-57 Technical Document Portal (https://nasa.gov/x57/technical)