

Advanced Computing @ NAS

Supercomputing @ NAS

NASA's Premier Supercomputer Center

Charter: to support all supercomputing requirements of NASA Mission Directorates

Over 500 science & engineering projects with more than 1,350 users

Pleiades: 7.25 PF peak – 11K+ multigenerational nodes; 245K+ cores; #17 on TOP500 (#7 in US): #11 on HPCG

Supercomputing @ NAS

NASA's Premier Supercomputer Center

Charter: to support supercomputing requirements of all NASA Mission Directorates

Over 500 science & engineering projects with more than 1,350 users

Supercomputing @ NAS

NASA's Premier Supercomputer Center

Charter: to support supercomputing requirements of all NASA Mission Directorates

Over 500 science & engineering projects with more than 1,350 users

Application Usage @ NAS FY17

Application Usage @ NAS FY17

SBU Benchmarks

- Standard Billing Unit (SBU) is a measure of application cost running on minimum allocatable unit (MAU) of a system for a given node type
- Used for usage accounting and tracking across node types
- Also used for benchmarking and performance comparisons
- The first set of SBU benchmarks (SBU1) was released in 2011 with Intel Westmere as baseline
- SBU2 Benchmark Suite under development
 - Utilizes Intel Broadwell as baseline
 - Updated test cases with increased MPI rank counts
 - 30 mins execution on most recent node type in 2016 (Broadwell)
 - Adjusted weight factors for workloads in 2016

Application	<u>Missions</u>	<u>Version</u>	<u>Testcase</u>
FUN3D	ARMD/HEOMD	13.1	1.7B cells, 2016 MPI ranks
OVERFLOW	ARMD/HEOMD	2.21	753M grid points, 2016 MPI ranks
USM3D	ARMD/HEOMD	2016	623M cells, 2016 MPI ranks
Enzo	ASTRO	2.5	cosmology sim, 196 MPI ranks
GEOS-5	SMD (Earth Sci)	5.16.5	GMAO global data, 1344 MPI ranks
nu-WRF	SMD (Earth Sci)	v8-3.71	MERRA-2, 1680 MPI ranks 8

SBU2 Benchmark Performance

Performance of CFD codes

Performance Study: Intel Xeon Ph

Goal: Evaluate potential of new architectures for NASA applications

Approach: Use microbenchmarks, NAS parallel benchmarks, full-scale applications

Areas of Interests:

- Architecture
- Hierarchical memory
- Comparison with Xeon processors (Haswell, Broadwell)
- Application porting effort
- Compiler and tools
- Code optimization
- Data layouts and structures

Intel Xeon Phi (Knights Landing-KNL) Processor

- Self-boot, Intel Many-Integerated Core (MIC) architecture
- Binary compatible with Xeon ISA
- 2 wide (512-bit) vector processing units
- Integrated on-chip high bandwidth memory (MCDRAM)
 - can be used in several modes: cache, flat memory, hybrid

Xeon Phi Performance

Overflow

- NASrotor: 91 M grid points, 45 GB memory
- KNL-cache mode 20-40% better on 1, 2 nodes as case doesn't fit in MCDRAM
- On 4, 8 nodes no difference between cache and flat modes on par with Broadwell

FUN3D

- 46M cell, 70 GB memory
- KNL-cache mode better upto 4 nodes as case doesn't fit in MCDRAM
- Haswell better as MPI impedes scaling on KNLs

- Easy initial porting of code no changes required
- Optimization needed for memory hierarchy in cache mode / NUMA effects in flat-memory mode
- Codes that are vectorized and cache-optimized will perform better

Monitoring Power Usage of Application

Goal

- Analyze correlation with application characteristics
- Understand and improve resource utilization of applications

Infrastructure built on Intel RAPL MSR

- Accessing via the Linux <u>powercap</u> interface
- Energy usage data for processors and DRAM

Approach

- Per-application monitoring
 - for focused analysis
- Per-job monitoring
 - for system-wide resource analysis

PBS Lumber prologue --power epilogue **Power DRAM** logger daemon /var/log/ **Processor** message Linux MSR Powercap Interface Processor **DRAM** Power reader **Profiling MPIProf** data

RAPL - Running Average Power Limit, MSR - Model Specific Registers

Lumber – a tool for real-time data-mining of system log-files for sophisticated job and system behavior analysis.

Power Usage Results

Processor power usage comparison:

- Similar across applications
- Drop at the last node related to less workload on the node

DRAM power usage comparison:

- Shows correlation with different applications
 - Most with OVERFLOW, least with Enzo

OVERFLOW runs (y-axis power diff between sockets):

 Unbalanced run: Cores fully populated on the first socket but not on the second socket showing upto 30% difference

Modeling & Simulation @ NAS

CFD Technologies @ NAS

Cart3D

 Michael Aftosmis, Marian Nemec, David Rodriguez, George Anderson, Marsha Berger (NYU)

eddy

- Scott Murman, Laslo Diosady, Anirban Garai, Corentin Carton de Wiart, Patrick Blonigan, Dirk Ekelschot
- LAVA (Launch, Ascent, and Vehicle Aerodynamics) Framework
 - Cetin Kiris, Jeff Housman, Mike Barad, Joseph Kocheemoolayil, Emre Sozer, Francois Cadieux, Gerrit Stich, Marie Dennison, James Jensen, Jared Duensing

Cart3D

- Designed for analysis and design of complex aerospace vehicles.
 - Automated meshing insensitive to geometric complexity
 - Inviscid analysis with automatic solution verification
 - Includes surface modeling, mesh generation, data extraction
 - Automatic & robust error control with quantitative error bounds
- Applications
 - Aerodynamic database generation Including case management
 - Parametric and trajectory studies
 - Preliminary design includes gradient-based design framework
- Most common use is populate aerodynamic performance databases for arbitrarily complex vehicles
 - Routinely run O(10³-10⁴) individual cases on complete configurations
 - All cases use adjoint-based mesh adaptation and include mesh convergence studies with error estimates for outputs of engineering interest
 - Widely used throughout NASA, DoD, and industry. NASA use includes HEOMD (Orion MCEV, SLS), ARMD (CST, LBFD, AATT), SMD (ATAP)
- HPC
 - Typical problem size of 10⁷-10⁸ cells on 1000 cores
 - Near ideal scalability on distributed and shared memory systems (documented up to 8k cores)

Cart3D: Typical Application

Aero-performance database of Grid-Fins equipped Launch Abort Vehicle

- Geometrically complex vehicle designs
- Database of ~10⁷ cases examining performance similar to Orion-MCEV
- Wide range of flight conditions from low subsonic to supersonic

Cart3D: Typical Application

Aero-performance database of Grid-Fins equipped Launch Abort Vehicle

- Geometrically complex vehicle designs
- Database of ~10⁷ cases examining performance similar to Orion-MCEV
- Wide range of flight conditions from low subsonic to supersonic

Cart3D: Recent Application

Evaluate threat due to asteroid entry into Earth's atmosphere

Calculate overpressure and wind speeds when asteroid hits the ground to evaluate damage

- Extreme range of velocity, length, and time scales
 - ➤ Velocity: Entry Mach = 40-70, into M_{∞} = 0 atmosphere
 - ➤ Length: Domain extends hundreds of kilometers, but desire loads on human-scale structures
 - Time: Strong shock propagation requires small time steps, but must propagate hundreds of kilometers; Shock requires over 5mins to travel 100km, but entry requires time steps $\Delta t = \mathcal{O}(10^{-3}) \rightarrow \mathcal{O}(10^{5}-10^{6})$
- Typical cases have 200-300 M cells
- Usual run is on 4-8k cores (NAS Pleiades system)
- Planned improvements:
 - Add terrain and structures
 - Mesh adaptation
- Similar to a broad spectrum of unsteady problems – this problem can be run parallel in space but is sequential in time as opposed to aero-database applications which are "embarrassingly parallel"
 - Requires extreme parallelization of all stages to gain overall efficiency

- Develop next-gen tools for scale-resolving simulations with a focus on exascale computing
- Develop new technology, not re-use existing algorithms, models, etc.
 - Entropy-stable high-order solver, dynamic variational multiscale method, metric-based adaptation, chaotic adjoint shadowing, ...
- Use exascale computing to open new possibilities for
 - Multi-physics, robust error estimates, ...
 - Certification by simulation
- Optimized for next-gen exascale hardware
 - 75% of machine peak in core tensor-product factorization routines

eddy

- Recent work extending to novel monolithic multi-physics solver
 - Aeroheating, jet interactions, chemistry, ...
 - Rotating turbomachinery, combustion, ...
- Four presentations at SciTech 2018

LAVA Framework

A flexible, modular framework supporting multiple computational grid paradigms

 Provides development opportunity for unsteady separated flows as well as aeroacoustics applications.

Explores revolutionary approaches to reduce computational time to reach converged

statistics.

LAVA: Launch Environment

Predictive analysis of launch environment (trench and mobile platform)

- Pressure and thermal analysis of plume impingement on main flame deflector
- Containment analysis of plume in flame trench
- Numerous vehicles were analyzed on the pad, including SLS and commercial vehicles
- Drift analysis with plume impingement:
 - unsteady CFD with fixed vehicle
 - time-averaged SLS plume swept past pad and tower following 4000 trajectories

Challenges in Computational Aero-Acoustics

Computational Requirements

- Resources used for Cartesian Navier-Stokes examples:
 - Launch Environment: ~200 million cells, ~7 days of wall time (1000 cores)
 - Parachute: 200 million cells, 3 days of wall time (2000 cores)
 - Contra-Rotating Open Rotor: 360 million cells, 14 days (1400 cores)
 - Launch Abort System: 400 million cells, 28 days of wall time (2000 cores)
 - Landing Gear: 298 million cells, 20 days of wall time (3000 cores)

Space-time resolution requirements for acoustics problems are more

demanding.

- LAVA Cartesian infrastructure re-factored to add Lattice Boltzman Method (LBM)
 - Utilized existing LAVA Cartesian data structures and algorithms

Lattice Boltzman Landing gear: vorticity colored by Mach number

LAVA Performance

Method	CPU Cores (node type)	Cells (million)	Wall Days to 0.19 sec	Core Days to 0.19 sec	Relative SBU Expense
NS-GCM	3000 (ivy)	298	20.5	61352	12.1
NS-IIM	9600 (has)	222	6.1	58490	15.3
LBM	1400 (bro)	260	2.25	3156	1

For a comparable mesh size, LBM is 12-15 times faster (in CPU utilization) than Navier-Stokes with immersed boundaries, and is equally accurate.

Performance details:

- Both Cartesian Navier-Stokes and LBM are memory-bound (not compute-bound) algorithms, the latter much more so than the former.
- Non-linear, LBM collision operation (bulk of the computation) is entirely local.
 This data locality is critical to the computational efficiency of LBM relative to high-order Cartesian NS codes.

HPC Challenges

- Intra-node performance
 - Increasing number of cores
 - Cache/Memory hierarchies and bandwidth
 - Vectorization
 - Hybrid architectures
 - Code optimization and "smarter" algorithms
- Inter-node performance
 - Load balance
 - Communication optimization
 - Latency hiding
- Fault tolerance/resiliency particularly at scale
- I/O
 - I/O optimization
 - Infrastructure to support a wide variety of usage patterns
- Data analysis and visualization of extremely large dataset

Acknowledgements

Performance Characterization:

Henry Jin, Bob Hood, Application Performance Group

Modeling & Simulation:

Mike Aftosmis, Cetin Kiris, Scott Murman, Seokkwan Yoon

Visualizations:

Data Analysis and Visualization Group

Thanks!

piyush.mehrotra@nasa.gov

www.nas.nasa.gov