

Exploration of Near-term Potential Routes and Procedures for Urban Air Mobility

Savita Verma, Jillian Keeler, Tamsyn Edwards and Victoria Dulchinos

Why Urban Air Mobility?

- Improve mobility
- Decongest Road traffic
- Reduce transport time
- Reduce strain on public transit systems
- Reduce traffic accidents

Photo: Noah Berger

What are UAM operations?

Urban Air Mobility operations involve

- electric Vertical Takeoff and Landing (eVTOL) vehicles
- Vertiports in metroplex airspace
- Low Altitude
- Passengers

- Market studies focused on demand and population demographics
- Fast time simulations to evaluate separation between UAM flights
- Fast time simulations to design approach profile for eVTOLs
- Investigating air traffic management for small Unmanned Aerial Systems (sUAS)
- Vertiport design and locations for UAM
- Identify barriers and challenges to Urban Air Mobility such as noise, integration with airports and other airspace

- Explore procedures for UAM traffic accessing Class B/C/D airspace
 - Current day helicopter routes and communications
 - Modified helicopter routes and reduced communications
- Evaluate different levels of UAM traffic

Experimental Matrix

Level of UAM traffic	Helicopter Routes			
	Current Routes Current level of Communications (Baseline)	Current Routes <i>Reduced</i> <i>Communications</i>	Modified Routes Reduced Communications	
Low	Scenario C1	Scenario CL1	Scenario M1	
Medium	Scenario C2	Scenario CL2	Scenario M2	
High	Scenario C3	Scenario CL3	Scenario M3	

Communications when entering Class B (KYOTE)

UAM789: DFW Tower, UAM789, at KYOTE, 1100 ft, request bravo clearance to KDF5 via Colony; I-35 East; Vista ridge; Spine Rd

DFW Local controller: "UAM789 DFW altimeter XXXX, squawk XXXX... "Cleared to enter class bravo airspace, via Colony; I-35 East; Vista ridge; Spine Rd. Maintain 1100 ft

Communications while Departing at DFW vertiport (KDF5)

UAM789:

"DFW CD, UAM789 [location, ATIS] request VFR class Bravo clearance via Spine Rd; Grapevine; Vista Ridge; I-35 East"

DFW Clearance Delivery:

"UAM789 cleared to depart class Bravo via Spine Rd; Grapevine; Vista Ridge; I-35 East"

UAM789:

"DFW Tower UAM789, Ready to depart via Spine Rd; Grapevine; Vista Ridge; I-35 East"

DFW LE3:

"UAM789, DFW Altimeter XXXX, wind calm, departure from KDF5 will be at your own risk"

Experimental Matrix

Level of UAM traffic	Helicopter Routes			
	Current Routes <i>Current level of</i> <i>Communications</i> <i>(Baseline)</i>	Current Routes Reduced Communications	Modified Routes <i>Reduced</i> <i>Communications</i>	
Low	Scenario C1	Scenario CL1	Scenario M1	
Medium	Scenario C2	Scenario CL2	Scenario M2	
High	Scenario C3	Scenario CL3	Scenario M3	

- Pre-assign beacon codes to signatory operators
- Create Route Codes/Names for flights to reduce the verbiage
- Define helicopter routes with waypoints and altitudes
- Pilots automatically changed frequency when exiting Class B Airspace
- Frequency changes to different sector were *not* automatic
- Point Outs were written up for UAM flights within the same facility (Example: Spine road traffic for DFW East and West Tower)

	Origin	Destination	Origin Name	Destination Name	Modifications from Current Routes
	KFR1	KDF5	Frisco Vertiport	• Dallas Fort-Worth	Altitude 1600' MSL (1000 AGL) No longer uses Vista Ridge
			veniport	(pushed back)	
				Transition Point: KYOTE	

Communications when entering Class B (KYOTE)

UAM789: DFW Tower, UAM789, at KYOTE, 1600 ft, request Bravo clearance to KDF5 via DALLAS3

DFW LE3: "UAM789 DFW altimeter XXXX, Cleared to enter class Bravo airspace, via DALLAS3"

Communications while Departing at DFW vertiport (KDF5)

UAM789: "DFW CD, UAM789 [location, ATIS] request VFR class Bravo clearance via **FRISCO1**"

DFW Clearance Delivery: "UAM789 cleared to depart class Bravo via FRISCO1"

UAM789: "DFW Tower UAM789, Ready to depart via FRISCO1"

DFW LE3

"UAM789, DFW Altimeter XXXX, wind calm, departure from KDF5 will be at your own risk"

Experimental Matrix

Level of UAM traffic			
	Current Routes <i>Current level of</i> <i>Communications</i> <i>(Baseline)</i>	Current Routes Reduced Communications	Modified Routes Reduced Communications
Low	Scenario C1	Scenario CL1	Scenario M1
Medium	Scenario C2	Scenario CL2	Scenario M2
High	Scenario C3	Scenario CL3	Scenario M3

Modifications to Current Day Helicopter Routes

- Vehicle concepts: Separate lift and cruise propulsion, tiltrotors, tiltwings, multi-rotors
- *Propulsion:* Electric or hybrid-electric
- Vehicle capacity: 4-6 passengers
- Number of pilots on board: One
- Altitude: 1100' MSL or 1600' MSL
- Speed in Scenarios: Approx. 130 kts
- Range flying in scenarios: About 25-50 miles

- Three Positions of interest (N=6)
 - DFW Tower Local East-3 (DFW-LE3)
 - DAL Tower Helicopter Position (DAL Helo)
 - ADS Tower (ADS)
- Four Confederates positions
- 13 Pseudo Pilots

DFW/ DAL/ ADS Sectors

- Dallas Fort Worth Metroplex Area (DFW, DAL, ADS)
- South Flow configuration only
- Forty min run
- Same background IFR and VFR traffic (12/27/17)

UAM	Traffic	Levels

	Low Traffic	Medium Traffic	High Traffic
Enroute Temporal Spacing	~ 90 s	~ 60 s	~ 45 s
Enroute Spacing	3.75 mi	2.5 mi	1.875 mi
Total Number of Flights	115	167	225

- Number/ Percentage of UAM flights managed by sector
- Communications
- Subjective results

- This research was a part-task simulation so data trends bring more valuable lessons than absolute numbers presented
- Average across positions are presented but they mask the differences between the different airports/positions
 - No tests of significance were performed due to lack of power (N = 2 for every position)

Average Number Flights managed by the Sector

- Average total number of flights managed by any sector is the average number of UAMs managed by the position at any given time
- Total Flights Planned = Total Flights managed + Flights denied
- Percentage of flights managed in the sector as of planned = ((Total flights planned – flights denied)/ Total Flights planned)*100

Average Number of UAM Flights Managed for DFW-LE3

Condition

The LOA has a bigger impact than modification of routes

NAMA Percentage of UAM Flights Managed of Planned for DFW LE-3

The LOA has a bigger impact than modification of routes

Average Number of Flights Managed - DAL Helo

Condition

Unusable routes in current day operations affect number of flights managed

Percentage of UAM Flights Managed of Planned for DAL Helo

Least number of flights were denied in Modified Routes

Average Number of Flights Managed - ADS Local

Condition

Average number of UAM flights managed is low in Modified Routes due to change in route structure

Percentage of UAM flights Managed of Planned for ADS

All flights planned for Modified routes were managed

Communications

Percentage of time spent on communications

"My communications were manageable"

LOA reduced communications by about 10-15% as compared to Baseline Controllers reported communications manageable across conditions but they managed more traffic in the Modified Routes with LOA

"Workload was operationally acceptable"

Position

Condition

Modified routes had better workload acceptability, DFW-LE3 did not find their workload acceptable

Did UAM Routes support Efficiency?

Routes were reported as efficient for Modified Condition, but DFW LE-3 did not find them efficient

Summary

- Current day routes and communication procedures can support UAM operations but are not likely to be scalable especially for large airports.
- LOA reduced communications approximately 10-15% compared to Baseline communications.
- Modifications of helicopter routes made them more acceptable and reduced workload.

Next Steps Explore UTM paradigm for UAM operations

San Francisco Traffic by Noah Berger, <u>Source:</u> <u>https://www.sfgate.com/traffic/article/bay-area-worlds-worst-traffic-study-2018-13614431.php</u>. Image used by permission of creator, text applied on bottom of image on slide 2.

Questions? Savita.a.verma@nasa.gov

Bibliography (images):

Back up slides

Routes Operationally Acceptable?

Trend shows that Modified Routes with LOA were the operationally acceptable as compared to the Current Routes (Baseline)