Dynamic Testing of a High-Specific-Torque Concentric Magnetic Gear

Justin	Zachary	Thomas
Scheidler	Cameron	Tallerico

NASA Glenn Research Center

Materials and Structures Division Rotating and Drive Systems Branch

> VFS 75th Annual Forum Philadelphia, PA May 13, 2019

www.nasa.gov

Outline

- Motivation
- Summary of NASA's prior work
- New test rig E-Drives Rig
 - Overview
 - Uncertainty analysis
- Measurements
- Conclusions
- Future work

Motivation

- Growth of short haul market & emergence of urban air mobility market
 - Enabled by electrified propulsion systems
 - Prevalence of smaller (lower torque) propulsors
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Direct drive

- + Simpler
- Non-optimal motor and/or fan

Geared drive

- + Optimized motor & fan
 - More complex
- Potentially less reliable

National Aeronautics and Space Administration

Motivation

Mechanical gearing

Pros

- + High / very high torque/mass
 (specific torque)
- + High / very high efficiency
- + Mature technology

Cons

- Contact-related wear & failure
 - Requires lubrication system(s)
 - Routine & costly maintenance
- Strong tonal vibration & cabin noise

Magnetic gearing

Pros

- + Non-contact
 - + No lubrication
 - + Low maintenance
- + Easily integrated in electric machines
- + Potentially low vibration

Cons

- Unknown limits on specific torque & efficiency
- Magnet temperature limit
- Individual magnet interaction weaker than 1 gear tooth pair

Concentric Magnetic Gears

Concentric magnetic gear

Inner magnet array ("sun gear")

Outline

- Motivation
- Summary of NASA's prior work
- New test rig E-Drives Rig
 - Overview
 - Uncertainty analysis
- Measurements
- Conclusions
- Future work

NASA's prior work

dynamic data

- Key conclusions from NASA's Phase 1 study (understand & improve specific torque)
 - Magnetic performance limited by mechanical features & minimum gap size
 - Concentric magnetic gears are viable, at least for lower torque applications

Performance compared to aircraft transmissions

National Aeronautics and Space Administration

Dynamic Testing of a Magnetic Gear

grade efficiency

Outline

- Motivation
- Summary of NASA's prior work
- New test rig E-Drives Rig
 - Overview
 - Uncertainty analysis
- Measurements
- Conclusions
- Future work

E-Drives Rig – Overview

Measurements: torque (in/out), speed (in/out), power (in/out), vibration, temperature

<u>Note</u>: noted specifications are for continuous operation

National Aeronautics and Space Administration

E-Drives Rig – Uncertainty Analysis

• Formal uncertainty analysis conducted ^{1,2}

1. Figliola, R. and Beasley, D., Theory and design for mechanical measurements, John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2015.

2. HBM, "Webinar: the calculation of the measurement uncertainty for torque applications," Available online [https://www.hbm.com/en/3941/the-calculation-of-themeasurement-uncertainty-for-torque-applications/], 2019.

National Aeronautics and Space Administration

E-Drives Rig – Uncertainty Analysis

- Torque uncertainty depends on torque & temperature
- Efficiency uncertainty depends on input speed, output torque, & gear ratio
- At a 95% confidence level, can often measure...

Outline

- Motivation
- Summary of NASA's prior work
- New test rig E-Drives Rig
 - Overview
 - Uncertainty analysis
- Measurements
- Conclusions
- Future work

Measurements – PT-2 (High Specific Torque)

Tare loss correction

- E-Drives Rig's bearing housings and some couplings are located between the torque transducers
- Tare loss vs. speed measured when prototype replaced by straight shaft

Measured PT-2 efficiency

with 95% confidence error bars

Efficiency extrapolated by assuming energy loss is independent of torque

Test matrix overlaid on test rig's operating space

- Power loss is independent of torque
 - Important for efficiency modeling
 - Allows accurate extrapolation of data to higher torques
- Efficiency uncertainty is sufficiently small to distinguish different trends and speeds

- Efficiency over 98.3% measured, extrapolated efficiency exceeds 99.5% at low speeds
- Over 99% efficiency should be achieved up to about 1,300 rpm output speed

Outline

- Motivation
- Summary of NASA's prior work
- New test rig E-Drives Rig
 - Overview
 - Uncertainty analysis
- Measurements
- Conclusions
- Future work

Conclusions

Key conclusions from NASA's Phase 2 study (feasibility of high efficiency)

- E-Drives Rig
 - Measurements can be used to confidently calculate efficiencies up to 99.7% for most tests
 - Limited ability to evaluate low speed performance need higher torque capacity
- Laminated permanent magnets may be required to meet efficiency targets
- Energy loss in magnetic gears is independent of torque
 - Loss & efficiency data can be accurately extrapolated to higher torques
- PT-3 can achieve > 99% efficiency up to output speeds of about 1,300 rpm

Magnetic gears can *simultaneously* achieve the high efficiency and high specific torque required for aerospace applications.

Laminated magnet

Conclusions – State of the Art Advancement

Technology		Specific torque, Nm/kg	Efficiency, %	
			Low output speed (100 rpm)	"High" output speed (900 rpm)
Target: Aerospace gearing		50 – 150	≥ 99.5	98.5 – 99.5
Baseline: SOA magnetic gears		≤ 17	≤ 98.7	87.5
NASA	Prototype 1 (PT-1)	20	—	—
	Prototype 2 (PT-2)	44	99.1	< 98
	Prototype 3 (PT-3)	47 (est.)	99.6	99.2
	Design 4 (PT-4)	49	99.6	99.0

Historical view of NASA's advancement

Future Work

- Can high efficiency be achieved without laminated magnets?
- Can a magnetic gear be passively air cooled?

Prototype	PT-4	X-57	
Application	RVLT Quad Rotor	X-57 High lift Propellers	
Laminations	Only 1.5 mm Sun Magnet Laminations	No Lamination, high magnet per pole count	
Cooling Method	Centripetally Pumped Flow	Centripetally Pumped Flow	
Gear Ratio	12.1:1	4.2:1	
Specific Torque	49 Nm/kg	~30 Nm/kg	
Efficiency	99% at operating speed	97.9% at operating speed	

Acknowledgements

- NASA Revolutionary Vertical Lift Technology (RVLT) Project
- NASA Internal Research & Development Project
- Vivake Asnani NASA Glenn Research Center

References

NASA's prior work

National Aeronautics and Space Administration

Dynamic Testing of a Magnetic Gear

Magnetic gearing

- Direct replacement concepts
 - Magnet energy density was low
 - Designs did not utilize all magnets

• Magnets have improved dramatically [Ref. 1]

Material improvements led to increased R&D [Ref. 2]

• In 2001, a practical design was created.

- Iron "pole pieces" are used to engage <u>all</u> <u>magnets</u> of the inner and outer rotors.
- Many prototypes developed for ground applications

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

 $N_{\rm modulator} = N_{\rm ring} + N_{\rm sun}$

Principles of Operation

- # of magnetic pole pairs ("teeth")
- # magnets
- Radial thickness of components & air gaps

Prototypes by location

Marker size = Number of prototypes built

National Aeronautics and Space Administration

Sea of Okhatsk

Pacific Oc

Coral

Tasman

© 2018 HERE

APUA NEW

Academic center

NORTH KOREA

SOUTH KOREA

PHILIPPINES

Timor

Sea

INDONESIA

Jova Sea

JAPAL

Philippine Sea

Aroturo Sei

AUSTRALIA

Great Australian

Bight

Future Work

Target NASA's eVTOL reference aircraft²

Future Work

		Quad	Side-by-side	Tiltwing
Propuls	sion	Electric	Par. Hybrid	Turbo elec.
configuration:		4 rotors	2 rotors	4 rotors
		4 EM	2 TS, 1 EM	4 EM
Gear st	age	EM-rotor	TS-rotor	EM-rotor
Ratio	-	12.1	Up to 140	9.3
Load	(kW)	15.9	92.6	535
	(rpm)	661	445	861
	(Nm)	229	1987	5928
Gear stage		N/A	EM-rotor GB	Genset
Ratio			TBD	2.6
Load	(kW)		73.2	2415
	(rpm)		445	8000
	(Nm)		1,569	2,883

Magnetically-Geared Motors

Magnetically-Geared Motors

