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Motivation

• Growth of short haul market & 

emergence of urban air mobility market

• Enabled by electrified propulsion 

systems

• Prevalence of smaller (lower torque) 

propulsors

• Most concepts use direct drive

• Geared drives are almost always mass 

optimal

Direct drive

motor
fan

+ Simpler

− Non-optimal 

motor and/or fan

Geared drive

motor

fan
gearbox

+ Optimized motor & fan

− More complex

− Potentially less reliable
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Motivation

Pros

+ High / very high 

torque/mass 

(specific torque)

+ High / very high 

efficiency

+ Mature technology

Mechanical gearing Magnetic gearing

Pros

+ Non-contact

+ No lubrication

+ Low maintenance

+ Easily integrated in 

electric machines 

+ Potentially low vibration

Cons

− Unknown limits on specific 

torque & efficiency

− Magnet temperature limit

− Individual magnet interaction 

weaker than 1 gear tooth pair− Routine & costly maintenance

− Strong tonal vibration & cabin noise

Cons

− Contact-related wear & 

failure

− Requires lubrication 

system(s)
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𝐺𝑅 =
𝑁ring

𝑁sun

𝐺𝑅 = 1 +
𝑁ring

𝑁sun

Concentric Magnetic Gears

Concentric magnetic gear

Outer magnet array

(“ring gear”)

Inner magnet array

(“sun gear”)

Modulator

(“planet gears”)

Analogous 

mechanical gear

(planetary) Gear ratio (GR)
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NASA’s prior work
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𝜏/𝑚=18.3∙𝜏^0.193

Performance compared to aircraft 

transmissions

Technology needs:
High precision, 

dynamic data
Feasibility of aerospace-

grade efficiency 

• Key conclusions from NASA’s Phase 1 study (understand

& improve specific torque)

• Magnetic performance limited by mechanical features &

minimum gap size

• Concentric magnetic gears are viable, at least for lower

torque applications

6.1” (154 mm) 

diameter
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E-Drives Rig  – Overview

Precision torque 

transducer (1 of 2)

6 kHz bandwidth

Motor

Dynamometer

Bearing housing (1 of 2) High-speed disc coupling (1 of 3)

Vibration 

isolation table

Measurements:  torque (in/out), speed (in/out), power (in/out), vibration, temperature 

Note: noted specifications are for continuous operation

30 kW
- 15,000 rpm  -

100 Nm

40 hp 73.7 ft-lb

Test 

Article

Output

(controlled torque)

30 kW
- 22,000 rpm  -

12 Nm

40 hp 8.9 ft-lb

Input

(controlled speed)

gearbox
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E-Drives Rig  – Uncertainty Analysis

𝑈 = ±1.96 𝑢0
2 + 𝑢𝑐

2

𝑈𝜂 = ±
𝜕𝜂

𝜕𝑥1
𝑈𝑥1

2

+
𝜕𝜂

𝜕𝑥2
𝑈𝑥2

2

+⋯

Efficiency 

uncertainty

Uncertainty of 

measured quantities

(design stage 

uncertainty)

𝜂 =
𝑃out
𝑃in

=
𝑇out𝜔out

𝑇in𝜔in

𝑢0 = ±
1

2
resolution

𝑢𝑐 = ± 𝑑1𝑢1
2 + 𝑑2𝑢2

2 +⋯

𝜂 = data ± 𝑈𝜂
with 95% 

confidence

Resolution error

Instrument error

linearity error

hysteresis error

temperature effects

…

...

• Formal uncertainty analysis conducted 1,2

1. Figliola, R. and Beasley, D., Theory and design for mechanical measurements, John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2015.

2. HBM, “Webinar: the calculation of the measurement uncertainty for torque applications,” Available online [https://www.hbm.com/en/3941/the-calculation-of-

themeasurement-uncertainty-for-torque-applications/], 2019.

Error propagation

Efficiency expression

From sensor datasheet



National Aeronautics and Space Administration Dynamic Testing of a Magnetic Gear 11

E-Drives Rig  – Uncertainty Analysis

• Torque uncertainty depends on torque & temperature

• Efficiency uncertainty depends on input speed, output torque, & gear ratio

• At a 95% confidence level, can often measure…

Power to better 

than ±0.2%

Efficiency to better 

than ±0.3%

Torque to better 

than ±0.03%

Efficiency uncertainty (%)
(for gear ratio 4.83 : 1, torque transducer 10 C above its calibration temperature)

From measured torques & speeds From measured powers
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Measurements  – PT-2 (High Specific Torque)

Tare loss correction

• E-Drives Rig’s bearing housings and some couplings are 

located between the torque transducers

• Tare loss vs. speed measured when prototype replaced by 

straight shaft

Measured PT-2 efficiency

Efficiency extrapolated by 

assuming energy loss is 

independent of torque

Average corrected efficiency

with 95% confidence error bars
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Measurements  – PT-3 (High Efficiency)

Output side

(high torque)

Input side

(low torque)

Torque reaction structure

(does not constrain 

radial or axial position) 



National Aeronautics and Space Administration Dynamic Testing of a Magnetic Gear 15

Measurements  – PT-3 (High Efficiency)

100 rpm

20.8 rpm

4.83 : 1 

reduction ratio
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Measurements  – PT-3 (High Efficiency)

Test matrix overlaid on test rig’s operating space

Accessible 

operating 

space

Designed speed limit of PT-3

Measured torque limit 

of PT-3

(~115 Nm)
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Measurements  – PT-3 (High Efficiency)

• Power loss is independent of torque

• Important for efficiency modeling

• Allows accurate extrapolation of data to higher torques

• Efficiency uncertainty is sufficiently small to distinguish different trends and speeds

1,552 rpm output

518 rpm output
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Measurements  – PT-3 (High Efficiency)

• Efficiency over 98.3% measured, extrapolated efficiency exceeds 99.5% at low speeds

• Over 99% efficiency should be achieved up to about 1,300 rpm output speed
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Conclusions

Key conclusions from NASA’s Phase 2 study (feasibility of high efficiency)

• E-Drives Rig

• Measurements can be used to confidently calculate efficiencies up to 99.7% 

for most tests

• Limited ability to evaluate low speed performance – need higher torque 

capacity

• Laminated permanent magnets may be required to meet efficiency targets

• Energy loss in magnetic gears is independent of torque

• Loss & efficiency data can be accurately extrapolated to higher torques

• PT-3 can achieve > 99% efficiency up to output speeds of about 1,300 rpm

Laminated 

magnet

Magnetic gears can simultaneously achieve the high efficiency and 

high specific torque required for aerospace applications.
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Conclusions  – State of the Art Advancement

Technology
Specific torque, 

Nm/kg

Efficiency, %

Low output speed 

(100 rpm)

“High” output speed 

(900 rpm)

Target: Aerospace gearing 50 – 150 ≥ 99.5 98.5 – 99.5

Baseline: SOA magnetic gears ≤ 17 ≤ 98.7 87.5

NASA

Prototype 1 (PT-1) 20 – –

Prototype 2 (PT-2) 44 99.1 < 98

Prototype 3 (PT-3) 47 (est.) 99.6 99.2

Design 4 (PT-4) 49 99.6 99.0
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Future Work

Prototype PT-4 X-57

Application RVLT Quad Rotor X-57 High lift Propellers

Laminations Only 1.5 mm Sun Magnet Laminations No Lamination, high magnet per pole count

Cooling Method Centripetally Pumped Flow Centripetally Pumped Flow

Gear Ratio 12.1 : 1 4.2 : 1

Specific Torque 49 Nm/kg ~30 Nm/kg

Efficiency 99% at operating speed 97.9% at operating speed

• Can high efficiency be achieved without laminated magnets?

• Can a magnetic gear be passively air cooled?
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NASA’s prior work

5.6” (141 mm) 

diameter

6.1” (154 mm) 

diameter

PT-2
PT-1

1 pole pair

1 pole pair

Sun

Modulator

Ring
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Measurements  – PT-3 (High Efficiency)
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Magnetic gearing

• Direct replacement concepts

• Magnet energy density was low

• Designs did not utilize all magnets

• Magnets have improved dramatically [Ref. 1]

• In 2001, a practical design was created. 

• Material improvements led to increased R&D [Ref. 2]

Concentric magnetic gear

(CMG)

• Iron “pole pieces” are 

used to engage all 

magnets of the inner and 

outer rotors.

• Many prototypes 

developed for ground 

applications
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Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15o wavelength), 6 magnets per pair

Fundamental of ring

1 pole pair

(1 wavelength)

15o

Closed loops indicate magnetic flux path,

color indicates radial component of flux
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15o

60o

Modulated 

wavelength 

Ring

wavelength 

Pole pieces

Modulated 

246

Fundamental of ring

Principles of Operation

Closed loops indicate magnetic flux path,

color indicates radial component of flux

• Example: 4:1 gear ratio, 24 pole pairs in ring (15o wavelength), 6 magnets per pair

𝑁modulator = 𝑁ring + 𝑁sun
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Principles of Operation

• Key design variables

• # of magnetic pole pairs (“teeth”)

• # magnets

• Radial thickness of components & air gaps

Key

Coupling path ==

Leakage path  ==

Modulator

Sun

Ring

Fundamental sun and 

modulated ring field

Fundamental ring and 

modulated sun field

𝐺𝑅 =
𝑁ring

𝑁sun

𝐺𝑅 = 1 +
𝑁ring

𝑁sun
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Professor 

moved to PSU. NASA

UNC

TA&M

Magno-

matics

Mag 

Soar

Ebm-

papst

Emerging commercial center

Academic center

Marker size = Number of prototypes built

Prototypes by location
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Future Work

• Target NASA’s eVTOL reference aircraft 2

Quadrotor

“Air Taxi” 12:1 ratio

16 kW

battery motor
gearbox

fan

661 rpm

Side-by-Side

“Vanpool”
motor

turboshaft

battery

gearbox

fan

140:1 ratio

93 kW

445 rpm

TBD ratio

73 kW

Tiltwing

“Airliner”
2.6:1 ratio

2415 kW
9.3:1 ratio

535 kW

gearbox gearbox
motorturboshaft

861 rpm

generator

8000 rpm

fan
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Future Work

Quad Side-by-side Tiltwing

Propulsion

configuration:

Electric

4 rotors

4 EM

Par. Hybrid

2 rotors

2 TS, 1 EM

Turbo elec.

4 rotors

4 EM

Gear stage EM-rotor TS-rotor EM-rotor

Ratio 12.1 Up to 140 9.3

Load (kW) 15.9 92.6 535

(rpm) 661 445 861

(Nm) 229 1987 5928

Gear stage N/A EM-rotor GB Genset

Ratio TBD 2.6

Load (kW) 73.2 2415

(rpm) 445 8000

(Nm) 1,569 2,883
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Magnetically-Geared Motors

Wind industry, mass 

optimized motors

Helicopter 

gearboxes

Aero “super” mass-

optimized motors

~30x

~7x
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Magnetically-Geared Motors

Motor

Gearbox

Total

Direct-drive (Super mass optimized)

60% mass reduction




