NASA GRC Electrospray Activities Overview

Dr. Thomas Liu Electric Propulsion Systems NASA Glenn Research Center

May 2019

Approved for Public Release

2015 NASA Technology Roadmap: TA 2.2.1.5

Electrosprays provide thrust using a conductive fluid and electrostatic fields to extract and accelerate charged droplets, clusters of molecules, or individual molecules or ions

- Mission capability
 - Precision 6-DOF actuation with low vibrations
 - Astrophysical observatories
 - Formation flight of coupled / distributed spacecraft
 - Primary propulsion for small spacecraft
- Technology challenges
 - Extended lifetime operations for large total impulse
 - Low contamination impact on spacecraft

Role: Provide support in maturing electrospray technologies towards engineering integration, flight readiness, and mission success for NASA

- Collaborator for electrospray modeling research
 - Early Stage Innovations (ESI) Modeling for Small Spacecraft Electric Propulsion
- Provider of independent verification and validation (IV&V)
 - Small Spacecraft Technology Program (SSTP) micro-propulsion systems of interest
- Promoter of engineering rigor in technology's path-to-flight
 - DoD-NASA micro-propulsion technology readiness level (TRL) definitions
 - > NASA Class-D mission electric propulsion qualification guidelines and best practices

2018 Early Stage Innovations: (T1) Modeling for Small S/C EP

- Advance modeling techniques and simulation capabilities beyond laboratory-level development and empirical trial-and-error
- Address reliability and integration issues that are some of the key obstacles to mission infusion
- Welcome corresponding experimental measurements and system testing that are directly coupled with the modeling activity

Areas of Interest

Ground facility effects vs. the in-space environment

Erosive and other lifetime-limiting mechanisms

System sensitivities and potential failure modes (e.g., tolerance misalignments, propellant contamination, degraded isolation, arcing events, etc.)

Plume neutralization and interactions with s/c

Multi-thruster operations and interactions

System performance stability, repeatability, and transients

Heat generation and dissipation on integrated system operations

2018 Early Stage Innovations: (T1) Modeling for Small S/C EP

- Advance modeling techniques and simulation capabilities beyond laboratory-level development and empirical trial-and-error
- Address reliability and integration issues that are some of the key obstacles to mission infusion
- Welcome corresponding experimental measurements and system testing that are directly coupled with the modeling activity

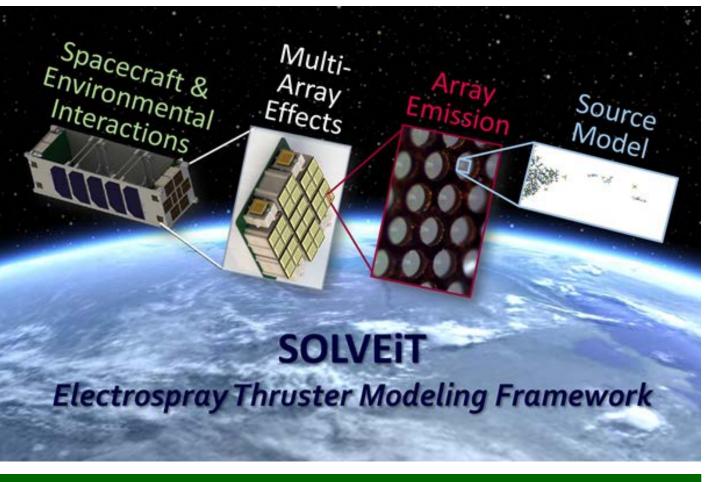
NASA GRC Research Collaboration	
Research Institution	Project
University of Michigan	Data-Driven Predictive Modeling of Electrospray Thruster Arrays
Massachusetts Institute of Technology	SOLVEIT: Simulating the Local Operational Volume of Electrospray ion Thrusters
University of Illinois at Urbana- Champaign	Multi-Scale Modeling of Plume- Spacecraft Interactions for Novel Propellants

UM: Data-Driven Predictive Modeling

PI: Dr. Benjamin Jorns (University of Michigan)

- Expand existing numerical framework of the Electrospray Propulsion Engineering Toolkit (ESPET)
- Apply optimal experimental design combining numerical simulations, targeted experiments, and machine learning
- Apply rigorous uncertainty quantification methods

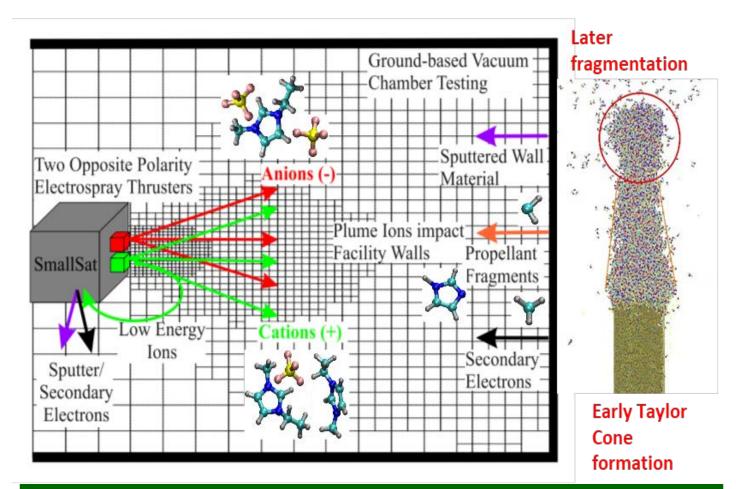
5/20, 1120-1140: Data-Driven Modeling and Development of ES Thruster Arrays



MIT: Simulating Local Operational Volume

PI: Dr. Paulo Lozano (Massachusetts Institute of Technology)

- Develop integrated modeling framework for ES arrays on smallsat platforms
- Build array source and surface interaction submodels
- Integrate sub-models for spacecraft-level simulation of coupled interactions with ES arrays



5/20, 1410-1430: Electrospray Activities at MIT

PI: Dr. Deborah Levin (University of Illinois at Urbana-Champaign)

- Develop plume model that maintains chemical-atomistic nature of plume up to mlength scales
- Model jet growth (100-nm to 1-µm scale)
- Address Coulomb interactions and sputtered species (1-µm through 1-m scale)

5/21, 0920-0940: Challenges in Multi-Scale Modeling of Plume-Spacecraft Interactions

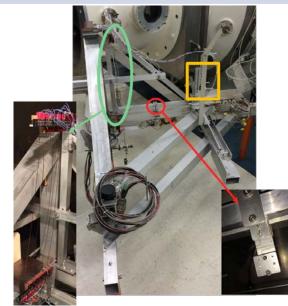
Purpose: Evaluate micro-propulsion systems of interest to NASA SSTP

- Characterize beginning-of-life (BOL) performance via direct measurements
 - Validate I-V performance model
 - Map performance envelope
- Track long-duration operational stability to end-of-life (EOL)
- Assess spacecraft integration concerns
 - Plume behavior
 - Thermal soak-back
 - Command / control functionality

Provide data for Small Spacecraft Systems Virtual Institute (S3VI) databases such as the *Small Satellite Parts Search* and *Small Spacecraft Technology State-ofthe-Art*

NASA GRC Micro-Propulsion Test Setup

Vacuum Facility


- VF-3Diameter: 1.5 m
- Length: 4.5 m
- Base *P*: ~4 x 10⁻⁷ torr (ODP)
- Parallel, dry-pumping train activation in summer 2019

<image>

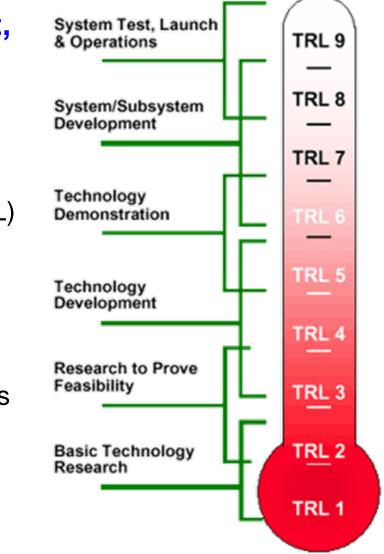
Thrust Performance

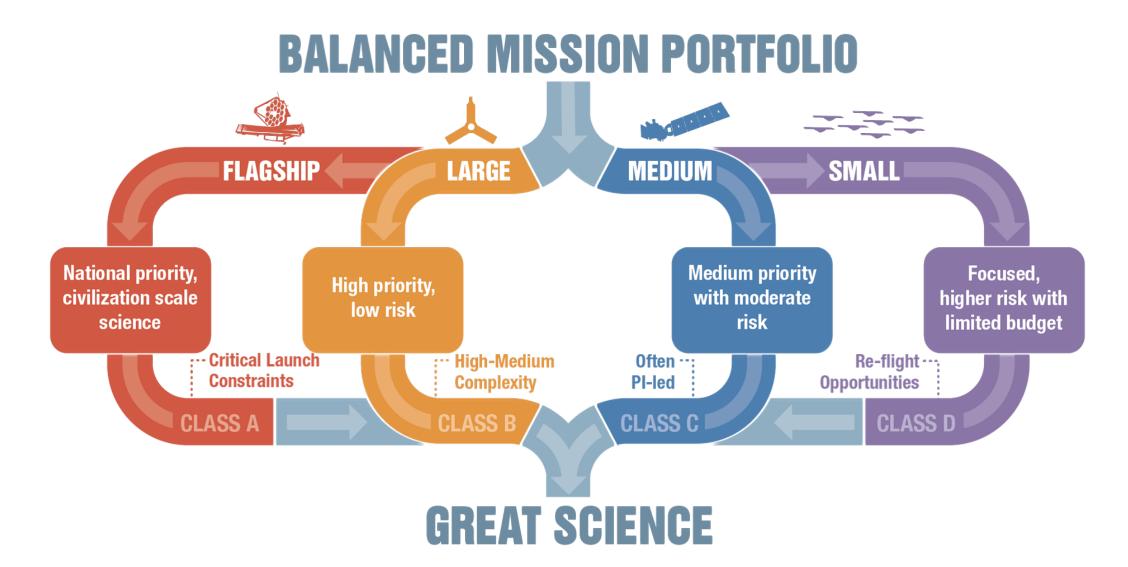
Torsional Thrust Stand

- Resolution: ~10 μN
- Pitch / roll control
- In situ calibration
- Thermal compensation activation in summer 2019

Plume Characterization

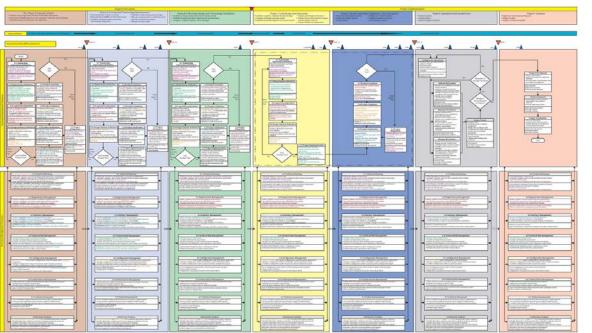
Hiden EQP Mass/Energy Analyzer


- Species: ions (+/-) and neutrals
- Mass: ≤ 500 amu, 1-amu res.
- Energy: ≤ 1 keV, 1-eV res.
- Time-of-flight: ≤ 1 µs res.
- Activation in autumn 2019



Problem: Current application of TRL is inconsistent, and self-evaluations are frequently overstated

- Revised update to AIAA-2016-5113 (Hargus & Singleton)
 - Collaboration between AFRL and NASA (GRC / GSFC / JPL)
 - Presentation / discussion at December 2019 JANNAF?
- Key features of framework
 - Tailors to micro-propulsion systems for small spacecraft
 - Seeks common ground between DoD / NASA interpretations and terminology
 - Focuses on system rather than component TRL
 - Specifies entrance / exit criteria for TRL



- Recommended guidelines for a minimum threshold of EP flight qualification activities
- Best practices to avoid recurring issues and common pitfalls with EP flight qualification
 - Mission-specific requirements
 - Integrated assembly level
 - Test-like-you-fly (TLYF) qualification sequence

Conventional NASA project life cycle process (*NASA Systems Engineering Handbook, SP-2016-6105*)

Presentation / discussion at December 2019 JANNAF?

Role: Provide support in maturing electrospray technologies towards engineering integration, flight readiness, and mission success for NASA

- Collaborator for electrospray modeling research
 - Early Stage Innovations (ESI) Modeling for Small Spacecraft Electric Propulsion
- Provider of independent verification and validation (IV&V)
 - Small Spacecraft Technology Program (SSTP) micro-propulsion systems of interest
- Facilitator of engineering rigor in technology's path-to-flight
 - DoD-NASA micro-propulsion technology readiness level (TRL) definitions
 - > NASA Class-D mission electric propulsion qualification guidelines and best practices