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Abstract.  9 

We use the recently released Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations 10 

(CALIPSO) Version 4.1 (V4) lidar data to study the smoke plumes transported from Southern 11 

African biomass burning areas. Significant improvements in the CALIPSO V4 Level 1 calibration 12 

and V4 Level 2 algorithms lead to a better representation of their optical properties, with the 13 

aerosol subtype improvements being particularly relevant to smoke over this area. For the first 14 

time, we show evidence of smoke particles increasing in size, as demonstrated by their particulate 15 

color ratios, as they are transported over the South Atlantic Ocean from the source regions over 16 

Southern Africa. We hypothesize that this is due to hygroscopic swelling of the smoke particles 17 

and is reflected in the higher relative humidity in the middle troposphere for profiles with smoke. 18 

This finding may have implications for radiative forcing estimates over this area and is also 19 

relevant to the ORACLES field mission. 20 
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1. Introduction: 22 

The impact of different types of aerosols on our environment is not very well understood and there 23 

is an ever-increasing need to characterize the various aerosol types in different parts of the globe 24 

(IPCC, 2013). In particular, the smoke from biomass burning needs to be better understood  25 

because of the important radiative effects of black carbon (Bond et al., 2013), and because forest 26 

fires have been growing in size and frequency in many parts of the world. As such, there have been 27 

many studies of smoke from biomass burning, its properties and their evolution with time (e.g., 28 

Reid et al., 2005; Semeniuk et al., 2007; Saide et al., 2015). Some of these properties depend upon 29 

the location and type of burning (e.g., smoldering or flaming). 30 

 Over Southern Africa, savanna burning occurs every year between June and October and 31 

constitutes the largest source of biomass burning smoke over the globe (Van der Werf et al., 2010; 32 

IPCC, 2013). The smoke plumes from these fires are transported over the Southeast Atlantic Ocean 33 

within 5-7 days, overlying one of the largest low altitude extended stratus cloud decks anywhere 34 

on the globe, which has consequences for radiative forcing estimates in this area. The direct 35 

radiative forcing can be complex under such circumstances, changing from cooling in absence of 36 

clouds to potentially heating at the top of the atmosphere, depending upon the aerosol loading as 37 

well as the albedo and fractional coverage of the underlying clouds (Chand et al., 2009; Wilcox, 38 

2012; Yu and Zhang, 2013). Passive satellite sensors have generally limited utility here because 39 

the aerosol retrievals are done mostly for cloud-free conditions. However, progress has been made 40 

in recent years, with researchers exploiting the spectral dependence of the absorption of the 41 

upwelling radiation by the aerosols to simultaneously retrieve the cloud and aerosol optical depths 42 

for cloudy scenes (Jethva et al., 2013, 2016; Meyer et al., 2015; Sayer et al., 2016). Multi-angle 43 

polarization information from the POLDER instrument has also been utilized to retrieve the AOD 44 
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(Waquet et al., 2012; Peers et al. 2015; Deaconu et al., 2017). However, passive sensors cannot 45 

provide vertically resolved information on these clouds and aerosols, which is crucial for a proper 46 

assessment of the radiative forcing, both direct and indirect. This vertical information has become 47 

possible in the last decade because of the space borne lidar CALIPSO, which has been providing 48 

high quality measurements of the aerosol vertical profiles globally since June 2006 (Winker et al., 49 

2009). Measurements from CALIPSO have been used to derive accurate estimates of radiative 50 

forcing of the aerosols above clouds in this region (Chand et al., 2008, 2009).  51 

 In the CALIPSO data processing sequence, the attenuated backscatter data are first 52 

examined to detect layers using a thresholding algorithm (Vaughan et al., 2009) and then the layers 53 

are classified as either a cloud or aerosol (Liu et al., 2009). The aerosol layers are subsequently 54 

assigned various subtypes based on their optical properties (layer integrated attenuated backscatter 55 

and estimated particulate depolarization ratio), the underlying surface type and altitude of the layer 56 

(Omar et al., 2009). The November 2016 release of Version 4.1 (V4) of the CALIPSO lidar Level 57 

2 data products incorporates significant improvements to the retrieval algorithms, including the 58 

aerosol subtype assignments. These changes have improved the global characterization of aerosol 59 

types using the CALIPSO measurements.  In particular, there was a significant anomaly in the 60 

subtyping over the Southeast Atlantic in earlier versions, where many smoke layers were 61 

misclassified as marine layers. This has since been addressed in V4. Many more smoke layers are 62 

now identified over the Atlantic, thus presenting a good opportunity for further study of these 63 

extensive and regularly occurring smoke plumes. In particular, the evolution of the optical 64 

properties of these smoke plumes as they are transported great distances over the South Atlantic 65 

may now be better characterized. 66 
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 In this short report, we use V4 CALIPSO data to present evidence of the evolution of size 67 

of the smoke particles being exported from the Southern African savanna burning zones. We show 68 

that these particles tend to increase in size as they are transported large distances over the ocean. 69 

Recent work has noted a close correlation between the smoke plumes and moisture over the South 70 

east Atlantic with a general increase in mid-tropospheric moisture in polluted conditions (Adebiyi 71 

et al., 2015). While most constituents of smoke plumes are generally hydrophobic, aging and 72 

oxidation processes during the transport might make them hydrophilic, and the signatures of this 73 

behavior could be discerned in the relative humidity data. This result will have implications for 74 

regional  radiative forcing  as well as for simulations of  the transport of these extensive smoke 75 

plumes and should be of interest to the currently ongoing ObseRvations of Aerosols above CLouds 76 

and their intEractionS (ORACLES) aircraft mission studying the smoke and its interaction with 77 

clouds over the same area (Zuidema et al., 2016). 78 

 79 

2. Data: 80 

We use the CALIPSO V4 level 2 aerosol profile product, which reports height-resolved profiles 81 

of the total backscatter and extinction coefficients at 532 nm and 1064 nm, as well as the 82 

perpendicular backscatter coefficients at 532 nm for all layers detected. The horizontal resolution 83 

of the data is 5km while the vertical resolution is 60m up to 20km and 180m above that. As part 84 

of the V4 level 2 updates, the retrieval algorithms were optimized to take maximum advantage of 85 

the changes in the V4 level 1 data, released earlier, with significant improvements in both the 532 86 

nm and 1064 nm channel calibrations (Getzewich et al., 2015). In particular, the improvement in 87 

1064 nm channel calibration makes it feasible to study the optical properties of particles using both 88 
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the channels with a higher degree of confidence in this new data set. We shall use the particulate 89 

color ratio () of the aerosols, which is defined by the relation: 90 

   (𝑧) =   
𝛽1064(𝑧)

𝛽532(𝑧)
            (1) 91 

where 𝛽1064(𝑧)  and 𝛽532(𝑧) are the particulate backscatter coefficients retrieved at altitude z at 92 

1064 nm and 532 nm, respectively. The particulate color ratio values derived from CALIPSO 93 

measurements for the various subtypes typically range from 0 to 2, with the small particles like 94 

smoke, polluted continental, clean and polluted dust generally having a broad peak near 0.5, while 95 

coarse particles like dust, marine and dusty marine have a broad peak near 0.7 or so. The 96 

uncertainties of the retrieved backscatter coefficients are somewhat larger for 1064 nm than 532 97 

nm, and the estimated uncertainties for the particulate color ratios for the various subtypes 98 

generally peak around 150% - 200%.  99 

 Within the troposphere, the primary modifications to aerosol subtypes in V4 are a) all 100 

aerosol subtypes can now be identified within the polar regions; b) a new subtype called “dusty 101 

marine” has been introduced to allow for mixing of transported dust with marine aerosols and c) 102 

no distinction is made between polluted continental and smoke layers below the planetary 103 

boundary layer, while the non-depolarizing elevated layers with layer tops above 2.5 km are now 104 

classified as “elevated smoke”. We use aerosol layers that have been designated as either “polluted 105 

continental/smoke” or “elevated smoke” by the CALIOP level 2 aerosol classification algorithm 106 

for our analysis. Previous iterations of the CALIPSO aerosol subtype assignments have been 107 

validated by comparison with AERONET data as well as High Spectral Resolution Lidar (HSRL) 108 

data (Mielonen et al., 2009; Misra et al., 2013; Burton et al., 2013; Bibi et al., 2016). We also use 109 

the 1064 nm measurements retrieved from the Cloud-Aerosol Transport System (CATS) lidar on 110 
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board the International Space Station (ISS) Mode 7.2 Version 2-01 Level 2 Operational (L2O) 111 

Layer and Profile data products.  The CATS lidar measures 1064 nm elastic backscatter in 112 

polarization planes parallel and perpendicular to the transmitted linearly polarized laser pulses, 113 

thus providing depolarization ratio data at 1064 nm since March 2015 (Yorks et al., 2016). 114 

3. Results 115 

3.1. Particulate color ratio evolution in transported smoke.      116 

   117 

 118 
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 Figure 1. CALIPSO browse images from September 5, 2010 of a) 532 nm attenuated 119 

 backscatter coefficients; and  b) aerosol subtypes reported in the V3 data products; and c) 120 

 aerosol subtypes reported in the V4 data products.  121 

Figure 1a shows the nighttime 532 nm attenuated backscatter coefficients measured over the South 122 

Atlantic Ocean off the coast of Southern Africa on September 5, 2010. The extended plume at 2-123 

5 km altitude between 19°S and 5°N is smoke that has been transported from the extensive fires 124 

that occur over Southern Africa between June and October every year.  Figure 1b shows the aerosol 125 

subtypes assigned in the Version 3 (V3) data products. As can be seen, in the V3 analysis the 126 

plume between 2 and 5 km is punctuated by a large number of misclassified marine layers (in 127 

blue). The misclassification of smoke layers as marine was a pervasive problem in V3 data over 128 

this area. Figure 1c shows the recently released V4 data, where now we can see a fuller and more 129 

coherent smoke plume.  With the improvements incorporated into the aerosol subtyping scheme, 130 

the V4 analysis reports a much larger number of smoke layers (and an upward revision of the 131 

aerosol optical depth) over this most important and extensive biomass burning area. Thus, we now 132 

have more representative information about the spatial extent of biomass burning plumes in this 133 

region so that we can better exploit the optical properties reported in the CALIPSO data products.134 

  135 

   136 
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 137 

 Figure 2. a) Particulate color ratio distribution of smoke at 3 km for August, 2006-2010,138 

 binned in increments of 2° latitude and 2° longitude, with wind vectors at 700 hPa 139 

 from MERRA-2 (August 2006-2010) binned in increments of 2.5° latitude and 2.5° 140 

 longitude; and b) height-longitude cross section of particulate color ratio along 0-25°S 141 

 (August 2006-2010). Only nighttime data are used. 142 

Figure 2a shows the spatial distribution of the particulate color ratio of the aerosol samples 143 

classified as smoke at 3 km using nighttime data for the month of August averaged over 2006-144 

2010. As mentioned above, the particulate color ratio is the ratio of the total backscatter 145 

coefficients at 1064 nm and 532 nm, and provides a measure of aerosol particle size. The data 146 

shown in Figure 2 used only cloud free nighttime profiles.  Further, we have included data from 147 

only those profiles which had the extinction quality control flag as either zero, indicating that the 148 

initial lidar ratio resulted in stable extinction retrievals, or one, which flags those cases where the 149 

lidar ratio could be inferred directly from the data. We also filtered out those data points where the 150 

extinction uncertainty estimate diverged and those where the uncertainty of particulate color ratio 151 

exceeds 500%. The uncertainty filters retain about 93% of the samples in the region between the 152 

equator and 35°S and 35°W-55°E. A minimum number of 15 samples was required for each grid 153 
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box. As can be seen in Figure 2a, there is a clear increase in the particulate color ratio values from 154 

the source areas over land to those over the ocean. This likely represents an increase in the size of 155 

the smoke particles as they are swept over the ocean over 5-7 days. To our knowledge, this is the 156 

first time that evidence for a potential increase in the size of the smoke particles derived from 157 

satellite data is being reported over this area. The full altitude range of the data can be seen in 158 

Figure 2b, which shows the height-longitude cross-section of the particulate color ratios over 0-159 

25°S, using only the cloud free nighttime profiles for August 2006-2010. Once again, the 160 

difference between the land and ocean can be clearly seen with somewhat higher values at the 161 

lowest altitudes over the ocean, which might be due to gravitational settling of relatively larger 162 

and heavier particles.    163 

 164 

 165 

 166 

 Figure 3. Histograms of particulate color ratio over land (25°S-0,10°E-35°E, in blue) and 167 

 ocean (25°S-0, 30°W-10°E, in aquamarine, filled) at a) 2 km and b) 3 km (August 2006-168 

 2010).  169 



 

10 
 

Figures 3a and 3b  show the histograms of the particulate color ratio at 2  km and 3 km respectively 170 

over the source regions on land (in blue, between 25°S-equator, 10°E-35°E) and over oceanic 171 

regions (in aquamarine, filled, between 25°S-equator, 30°W-10°E) for August 2006-2010. There 172 

is a significant difference in the color ratio distribution between land and ocean, with the 173 

distribution significantly shifted toward higher values over the ocean at both altitudes, and a much 174 

sharper difference at 2 km. At 3 km, the mean particulate color ratio over land is ~0.7 while that 175 

over the ocean is ~0.9, an increase of ~29%, while the increase at 2 km is ~ 60%.  This increase in 176 

particulate color ratio for smoke particles was seen for all months between June and October and 177 

in all years, with some interannual variability. Similar results were also obtained using the daytime 178 

data, although the latter has significantly more noise than the nighttime (not shown). Given that 179 

this phenomenon occurs consistently for the key biomass burning months every year, it is not likely 180 

to be a data artifact.    181 

 Apart from the smoke that is transported to the Atlantic, there is another pathway that 182 

transports smoke plumes from the southern Africa to the Indian Ocean. This has been noted in 183 

satellite data (Swap et al., 1998) and has been known as the “river of smoke”. This outflow can be 184 

seen in Figure 2 south of 20°S and between 30°E-55°E. While there is some suggestion of a similar 185 

increased color ratio as compared to the land, there is more noise as compared to the outflow to 186 

the southeast Atlantic. Further, the signature is not clearly seen in the spatial distribution at other 187 

altitudes (not shown). Therefore we shall restrict our discussion to the transport to the southeast 188 

Atlantic Ocean only. 189 

 The current version (V4.1) of the CALIPSO data processing scheme employs the Modern 190 

Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) for 191 

meteorological information. The latter, for the first time, assimilates aerosol optical depth (AOD) 192 
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retrieved from AVHRR, MODIS, MISR and AERONET through the integration of the GOCART 193 

model and the aerosol radiative feedbacks into the atmospheric fields (Randles et al., 2016). The 194 

vertical profiles of the total attenuated backscatter from MERRA-2 generally reproduce the 195 

CALIPSO vertical profiles at various places over the globe, but show some biases (Randles et al., 196 

2016).  Insofar as MERRA-2 already incorporates aerosol information, it is important to determine 197 

if the results presented above are biased in any way. We found similar particulate color ratio 198 

enhancements over the ocean using V3 CALIPSO data, which reported fewer smoke layers but 199 

used GEOS-5.7.2 meteorological data that did not assimilate the aerosol information, thus 200 

discounting the possibility of any bias coming from the MERRA-2 meteorology. This also implies 201 

that the V4 changes in the aerosol subtyping algorithm do not affect our primary result. 202 

 The increase in size of smoke particles from CALIPSO observations as seen above is 203 

consistent with the findings of Sayer et al. (2014), who studied smoke aerosols transported from 204 

biomass burning using data from Analysis of Aerosol Robotic Network (AERONET) stations. For 205 

African smoke particles reaching Ascension Island (7.98°S, 14.42°W) in the southeast Atlantic 206 

Ocean, they found the volume mean radius (rv,f) for fine mode particles to be larger by about 0.02 207 

µm than at the inland station of Mongu (15.25°S, 23.15°E) in South Africa.  This difference is 208 

significantly higher than the estimated uncertainty of 0.01 µm for (rv,f) (Sayer et al., 2014). They 209 

did not find any evidence of data artifacts resulting from calibration or contamination issues and 210 

concluded that the larger radius of the smoke particles at Ascension compared to Mongu is likely 211 

to be “a real characteristic of the aerosol transported to this area, rather than an artefact”, with 212 

aging over the several days of transport over the ocean being one of the possible causes. 213 

3.2 Relative Humidity Variations 214 
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 We hypothesize that the increase in size of the smoke particles over the ocean may be related to 215 

swelling of the particles by water uptake, which might have a signature in the relative humidity 216 

(RH) profiles. Figures 4a and 4b show the height longitude distribution of RH from MERRA-2 as 217 

available in CALIPSO data files averaged between 25°S and the equator for all August 2006-2010 218 

nighttime data. The clear air RH profiles correspond to cloud-free and aerosol-free columns within 219 

this area, while the smoky profiles correspond to columns that are cloud-free but contain smoke 220 

samples (essentially corresponding to Figure 2b). Enhanced RH values seem to be associated with 221 

the biomass burning smoke plumes. As can be seen in Figure 4c, there is a notable difference 222 

between the two mean RH profiles between 2 km and 6 km (over the Atlantic ocean, 0-25°S, 223 

30°W-10°E) where the RH values for the mean smoky profile are larger than in the clear air mean 224 

profile.  225 

 226 

 227 
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 Figure 4. Height-longitude cross sections (0-25°S) of a) relative humidity for clear air 228 

 profiles, b) relative humidity for profiles with smoke samples in them, and c) averaged 229 

 profiles and standard deviations of relative humidity over the Atlantic Ocean (0-25°S, 230 

 30°W-10°E), using all data for August, 2006-2010.  231 

Adebiyi et al. (2015) had earlier shown that the RH profiles from MERRA on average tend to 232 

reproduce the large scale features from high resolution radiosonde profiles obtained at St. Helena 233 

Island (~16°S, 6°W), which is located near the southern parts of this study region. The deviation 234 

in the mean RH profiles between MERRA and radiosondes is ~10% (Adebiyi et al., 2015). 235 

However the bias changes sign around 700 hPa. Below this pressure level, MERRA profiles have 236 

a low bias as compared to sondes; above this pressure level, they have a higher bias. Note, 237 

however, that Adebiyi et al. (2015) used an earlier version of the MERRA product, and not the 238 

MERRA-2 reanalyses.  239 

 The mid-tropospheric difference between the smoky and the clear air RH profiles in Figure 240 

4c is quite similar to the results of Adebiyi et al. (2015) at St. Helena Island, representing the 241 

difference between polluted and non-polluted conditions in September-October. Adebiyi et al. 242 

(2015) presented individual CALIPSO smoke extinction profiles which often closely matched that 243 

of the radiosonde RH profiles at St. Helena with high RH values (~ 80%) at the top of the smoke 244 

layer with the largest extinction coefficients. In contrast, the RH profiles for the non-smoke days 245 

showed much lower RH values (≤ 20%) in the mid troposphere. Adebiyi et al. (2015) did not 246 

discuss the possible swelling effects on the smoke particles, though they did mention the possibility 247 

of this occurring. The increase in moisture collocated with increased aerosol loading suggests an 248 

environment conducive for swelling of smoke particles.  The increase in particulate color ratio of 249 

the smoke particles suggesting increased size is thus quite consistent with this scenario.  250 
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 251 

   252 

 Figure 5. Change in the color ratio with volume mean fine radius of smoke particles. 253 

 The refractive indices of 1.5170 – 0.0234i at 532 nm and 1.541 – 0.0298i at 1064 nm are 254 

 consistent with the smoke model in Omar et al., 2009.   255 

In Figure 5 we investigate the changes in color ratio as a function of volume mean fine radius using 256 

Mie scattering models. The inputs of the fixed parameters are from the fine mode of CALIPSO 257 

smoke parameters in Table 1 of Omar et al. [2009]. Further, we have used a fine mode fraction of 258 

0.99 for this calculation. Figure 5 shows a near linear relationship between the color ratio and the 259 

mean radius when the radius is between typical values of 0.10 – 0.18 for smoke aerosols. In this 260 

range, a color ratio change of 0.2 (consistent with the land to ocean difference in particulate color 261 

ratio as seen in Fig. 2) corresponds to a mean radius change of 0.03 µm which is somewhat larger 262 

than the 0.02 µm difference reported by Sayer et al. (2014). The color ratio plot is only a first-263 

order approximation of the changes in optical properties of a swelling particle, since the effects of 264 

adding water (refractive index of 1.33 – 0i at 20°C) to the smoke particle are not accounted for in 265 

this example. A more realistic modelling will need to consider co-variation of the complex 266 
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refractive indices at both wavelengths, aging as well as the mixing state, and is beyond the scope 267 

of the present study. 268 

 269 

3.3. Particulate depolarization of smoke 270 

The particulate depolarization ratio (i.e., the ratio of the backscatter in the perpendicular and 271 

parallel channels at 532 nm) reported in the CALIPSO data provides insight into the shape of the 272 

scattering particles. The particulate depolarization ratio values for the various aerosol subtypes 273 

range between 0 and ~0.5, with a mean value of about 0.04-0.05 for smoke and polluted continental 274 

to 0.27 for dust (Liu et al., 2015). Polluted dust has a mean value of about 0.13 and marine near 275 

0.02 and dusty marine about 0.15. The values of the estimated uncertainties for the various 276 

subtypes peak in the range of 200%-300%. In general, swelling might be expected to enhance the 277 

sphericity of particles. However, because biomass burning typically generates quasi-spherical 278 

particles having low depolarization ratios (Burton et al., 2013), it may be difficult to detect further 279 

changes in particle shape using this measurement.  280 

  281 

 282 
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 Figure 6. a) Particulate depolarization of smoke at 532 nm at 3 km from CALIPSO for 283 

 August, 2006-2010 and b) volume depolarization of smoke at 1064 nm at 3 km from CATS 284 

 for August 2015-2016. A minimum number of 15 samples per grid box was used for each 285 

 plot. Only nighttime data were used from both instruments. 286 

Figure 6a shows the spatial distribution of the particular depolarization (532 nm) of smoke samples 287 

at 3 km from CALIPSO, once again using only nighttime cloud free profiles in August for 2006-288 

2010. We rejected depolarization data having estimated relative uncertainty above 500%.  This 289 

criterion removes data points with very low negative particulate depolarization with associated 290 

uncertainties much higher than 500%. There is significant noise in the data with only a suggestion 291 

of a somewhat higher depolarization over the land areas over South Africa as compared to the 292 

oceanic regions. As an independent measurement, Figure 6b shows the spatial distribution of the 293 

volume depolarization of smoke at 3 km at 1064 nm as observed by the CATS lidar for August 294 

2015-2016. The CATS data products do not report particulate depolarization ratios.  However, 295 

because molecular contributions to the backscatter signal at 1064 nm are substantially smaller than 296 

at 532 nm (by a factor of ~17), the CATS 1064 nm volume depolarization ratios should provide 297 

essentially the same information as the particulate depolarization ratios.  The effect of swelling is 298 

seen a bit more clearly in the CATS 1064 nm depolarization ratio data, with somewhat higher 299 

values over the source regions in southern Africa and falling off over the Atlantic Ocean. The 300 

significantly higher depolarization of smoke particles south of 18°S may be related to aging of the 301 

particles in the anticyclonic gyre over this region (Figure 2a). In general the burning over Southern 302 

Africa takes place in dry conditions and produces soot particles which tend to be non-spherical as 303 

compared to the wet burning near the equator (Midzak et al., 2017). Note that CATS data products 304 

are only available at 1064 nm, so we cannot confirm the changing color ratio using the CATS data. 305 
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4. Discussion and Conclusions: 306 

We have presented evidence of a possible increase in the size of smoke particles that are 307 

transported over the South Atlantic Ocean in large amounts from the biomass burning regions of 308 

South Africa, as reflected in the particulate color ratios retrieved from the CALIPSO space borne 309 

lidar.  While we have presented the results for the month of August, the same color ratio 310 

enhancements in smoke plumes were observed from June through October. The enhanced RH 311 

profiles for smoke samples in the mid troposphere as compared to the clear air samples suggests 312 

an association with water uptake by these particles. As such, there have been reports of 313 

significantly increased moisture content in biomass burning smoke plumes, particularly for 314 

smoldering fires (Achtemeir, 2006, Clements et al., 2006). In Southern Africa, smoldering fires 315 

may be more frequent towards the equator during the wet season (Midzak et al., 2017). A number 316 

of studies have confirmed the hygroscopicity of smoke under certain conditions. Semeniuk et al. 317 

(2007) studied the hygroscopic behavior of 80 aerosol particles sampled from southern African 318 

burning sources during the SAFARI 2000 mission, which included tar balls and soot, as well as 319 

mixed particles. While tar balls and soot were found to be hydrophobic, mixed particles and 320 

particles with inorganic coatings showed significantly enhanced hygroscopicity.  A similar 321 

conclusion about the effect of inorganic material substantially increasing the hygroscopicity of 322 

smoke from Siberian fires was also reached by Popovicheva et al. (2016). Further, Vakkari et al. 323 

(2014) found that the hygroscopicity of smoke particles, again sampled from South African 324 

biomass burning areas, can increase rapidly within the first 2-4 hours due to oxidation and 325 

secondary aerosol formation. Aging and further oxidation of the smoke particles as they are 326 

transported to vast distances over the ocean may lead to further water uptake. It is possible that 327 

there might be other contributing mechanisms apart from swelling. Radke et al. (1995) had made 328 
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aircraft observations of a large smoke plume that originated in Oregon and was transported over 329 

the Pacific Ocean for about 3 days travelling over 1000 km. They found an increase in the size of 330 

the accumulation mode particles and argued that coagulation might have been underestimated as 331 

a causative mechanism for size changes in smoke plumes. However Radke et al. (1995) did not 332 

consider the possible effects of swelling, which seems to be a more likely explanation for our 333 

scenario given the correlation with RH as was also observed by Adebiyi et al. (2015) over St. 334 

Helena. We should mention that beyond the overall difference in RH between the smoke plumes 335 

and clear scenes, we did not find a statistically significant linear correlation between the RH 336 

enhancements and the color ratio enhancements. This may not be surprising, given the current 337 

level of understanding of the hygroscopicity of smoke under different conditions. The relative 338 

importance of the composition of smoke particles, the degree of aging as well as the RH level in 339 

changing the optical properties of the smoke particles in this area is also not well known at this 340 

time.  341 

 To our knowledge, this is the first report of a change in the size distribution of smoke 342 

particles as evidenced from satellite data over this area far from the source regions. The Mie 343 

calculations presented here show that the AERONET finding of a significant increase in rv,f at 344 

Ascension Island as compared to Mongu (Sayer et al., 2014) is consistent with the color ratio 345 

enhancement observed between land to ocean. This is a potentially important result, insofar as the 346 

aerosol indirect effect depends strongly on the size of the particles (Spracklen et al., 2011). The 347 

enhanced moisture associated with the smoke particles may also be important for radiative forcing 348 

and leads to a cooling in September-October in this area (Adebiyi et al., 2015). The size increase 349 

of smoke particles in this area should also provide important constraints for simulations of this 350 

southern African smoke transport, which show significant discrepancies compared to observations 351 
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(Das et al., 2017). Therefore, this finding needs to be explored further using field missions as well 352 

as with satellite data.  In fact, a major field mission, ORACLES (Zuidema  et al. 2016), is currently 353 

studying the aerosol and cloud properties over this very region, and will provide a wealth of 354 

resources to validate the results presented here. 355 
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List of Figure Captions 467 

 468 

Figure 1.  CALIPSO browse images from September 5, 2010 of a) 532 nm attenuated  469 

  backscatter coefficients; and  b) aerosol subtypes reported in the V3 data products; 470 

  and c)  aerosol subtypes reported in the V4 data products.  471 

Figure 2.  a) Particulate color ratio distribution of smoke at 3 km for August, 2006-2010, 472 

  binned in increments of 2° latitude and 2° longitude, with wind vectors at 700 hPa 473 

  from MERRA-2 (August 2006-2010) binned in increments of 2.5° latitude and 2.5° 474 

  longitude; and b) height-longitude cross section of particulate color ratio along 0- 475 

  25°S (August 2006-2010). Only nighttime data are used. 476 

Figure 3.  Histograms of particulate color ratio over land (25°S-0,10°E-35°E, in blue) and  477 

  ocean (25°S-0, 30°W-10°E, in aquamarine, filled) at a) 2 km and b) 3 km (August 478 

  2006-2010).  479 

Figure 4.  Height-longitude cross sections (0-25°S) of a) relative humidity for clear air  480 

  profiles, b) relative humidity for profiles with smoke samples in them, and c)  481 
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  averaged profiles and standard deviations of relative humidity over the Atlantic  482 

  Ocean (0-25°S, 30°W-10°E), using all data for August, 2006-2010.  483 

Figure 5.   Change in the color ratio with volume mean fine radius of smoke particles.  484 

  The refractive indices of 1.5170 – 0.0234i at 532 nm and 1.541 – 0.0298i at 1064  485 

  nm are consistent with the smoke model in Omar et al., 2009.   486 

Figure 6.  a) Particulate depolarization of smoke at 532 nm at 3 km from CALIPSO for  487 

  August, 2006-2010 and b) volume depolarization of smoke at 1064 nm at 3 km  488 

  from CATS for August 2015-2016. A minimum number of 15 samples per grid  489 

  box was used for each plot. Only nighttime data were used from both   490 

  instruments. 491 

 492 


