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Flight Control Research at NASA Ames e

Intelligent Systems Division: Advanced Control and Evolvable Systems Group (ACES)
» Adaptive, robust, and optimal control
* Unmanned Aerial System autonomous operation
* Avionics architectures and processes

Elastically shaped aircraft concepts
* Truss-braced wing ASE model development
* Real-time drag optimization control

* Multi-objective gust load alleviation control
* Wind tunnel demonstrations

Truss-braced win Variable Camber Continuous Trailing
9 Edge Flap (VCCTEF)



Elastically-shaped Aircraft Research @

Variable Camber Continuous Trailing

Edge Flap (VCCTEF) as a performance \
adaptive aeroelastic wing technology

funded by ARMD since 2010

Partnership and collaboration

» External partners include Boeing, SSCI
(Scientific Systems Company, Inc.), and
University of Washington (UW)

» Cross center collaboration with NASA LaRC

Research elements in FY 2019

» Multi-objective control for gust load alleviation (GLA) / drag optimization and wind tunnel validation
» Drag optimization of Boeing CRM (Common Research Model) aspect ratio 13.5

» Coupled aeroservoelastic flight dynamic modeling of Boeing Transonic Truss-Braced Wing (TTBW)

Advancing technology to TRL 5 through five wind tunnel test validation campaign
« Aerodynamic cruise drag test at UW (2013) and high lift test at UW (2014)

+ Active Real-time drag optimization control test at UW (Jun 2018)

» Active GLA control tests at UW (May 2019) and in NASA LaRC Transonic Dynamic Tunnel
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Truss Braced Wing Multi-Fidelity Modeling

BEAM3D

i e framework provides a means of

interference correction using
FUN3D CFD
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Real-Time Drag Optimization Wind Tunnel Test

Wind tunnel CRM model

Aerodynamic model parameter
identification by least-squares

Real-time optimization by iterative angle-of-
attack seeking method

Algorithm identified 3.9% drag reduction
at off-design CL = 0.65

Design Off-Design  Off-Design

k X * o)
CL — 05 CL — 0'65 CL — 07 Pertur?:tioni
Run Cp ACp | Cp ACp | Cp ACp 1 Clean Wing
Clean Wing Run 56 253 0 330 0 382 0 Wind Tunnel Model o == _|  Aerodynamic | e
Optimal Solution 1 Run 53 248 5 317 13 | 364 18 Control System | e T | e | Mope Parameter | s R
Optimal Solution 3 Run 54 255 -2 321 9 |367 15 . — Hodet —
Optimal Solution 9 Run 55 256 -3 [329 1 376 6 i '
Pseudo-Inverse Solution 1 Run 57 | 259 -6 322 8 360 22 ) Clean Wing Lift/
] ] . ~5h " Optimal Angle of Attack / | Iterative Angle-of- -t J s Flap Aerodynamic
Pseudo-Inverse Solution 3 Run 58 | 252 1 321 9 346 36 Flap Deflection Attack Seeking _
Real-Time Flap Lift / Drag Model Parameter
Optimization [ el Estimation

« Impact: Technology can achieve drag optimization at off-design cruise, enabling
mission-adaptive wing capabilities



Multi-Objective Control Architecture

Incremental controller development

« 6-DoF tracking controller /7
« Multi-objective controller

» Gust prediction corrector control

State and gust estimation methods

« On-wing reactive vs. look-ahead predictive
« Adaptive estimation
* Incorporation of FOSS measurements
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UWAL Wind Tunnel Demonstration

University of Washington test team

SSCI, University of Washington, Boeing, NASA Ames ACES Group
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West Side View of Kirsten Wind Tunnel
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Experimental description

Objective is to demonstrate multi-objective GLA control for flexible wing
* Low speed tunnel test

* Low cost wing development and design
o VCCTEF actuation

o Traditional sensors only
Gust generator development necessary

Serves as risk reduction measure for subsequent transonic IAWTM test



UWAL ASE Wind Tunnel Model @’

Foam base with central
spar—allows for flexible
structure with functional
ultimate strength

VCCTEF Flap Prototype
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UWAL Gust Modeling

6 Blades Configuration (c=0.4m)
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simulation

| 22.97f

« Stand in for LIDAR readings
« Facilitates accurate GLA

8ft

12ft
Translated to Gust propagation
temporal waveform model identified
6 Blades Configuration (c=0.4m) = agr10%in{wt), f = 2Hz @ = +10°%sin(wt) X =0.6m

f=2Hz .
N
',“Lw it ,‘\ (i

!

t=35s

t=3.75s

H
v=03m 5

Wing Location

Gust model identified from CFD

« Predict gust at wing from look-ahead point
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