STRUCTURE AND DYNAMICS OF THE HOT FLARING LOOP-TOP SOURCE OBSERVED **BY HINODE, SDO, RHESSI, AND STEREO**

Kyoung-Sun Lee¹, Hirohisa Hara², Kyoko Watanabe³, Anand₇D. Joshi², Shinsuke Imada⁶, David H. Brooks⁶, Phillip, Dang⁶, Toshifumi Shimizu⁷, and Sabrina L. Savage⁸

AFFILIATION: ¹CSPAR, UAH, ²NAOJ, ³NAGOYA UNIVERSITY, ⁴GEORGE MASON UNIVERSITY, ⁵SOFTWARE DEVELOPER AT CALL BOX, ⁶ISAS/JAXA, ⁷MSFC

[AAS 234 / SPD MEETING SESSION: FLARE 1]

INTRODUCTION: STANDARD FLARE MODEL

MULTI WAVELENGTH IMAGING OBSERVATION

- Standard flare model (CSHKP)
 - Imaging observations
 - Spectroscopy

Contour: HXR (blue) and SXR (red) from **RHESSI obs.**

INTRODUCTION: FLARE OBS.

HINODE/EIS (EUV IMAGING SPECTROMETER)

- EIS Flare studies (higher spatial (~2") imaging and spectral resolution)
 - **Reconnection outflows, inflows, line broadening (, temperature, density Iron lines)**

B9.5 flare (disk) on 2007 May 19 (Hara et al. 2011)

- hot reconnection outflow (Fe XXIIII/XXIII), cooler ion inflow (Fe XII), **Density (Fe XII)**

X1.7 flare (limb) on 2012 January 27 (lmada et al. 2013) - hot plasma flow over the loop arcade

INTRODUCTION: SUGGESTED FLARE STRUCTURE MODEL

HINODE/EIS (EUV IMAGING SPECTROMETER)

EIS Flare studies (higher spatial (~2") imaging and spectral resolution)

Hara et al. (2011)

 $V_{\rm D} = V_{\rm inflow} \cos \theta_1 \sim -20 \, \rm km/s$ - $T_e = 1.2$ MK from Fe XII/Fe X ratio - $n_e = 2.5 \times 10^9$ cm⁻³ from Fe XII ratio

 $T_e = 12$ MK from line ratio $V_{\rm NT} \sim 100$ km/s at impulsive phase

- RHESSI 4-6 keV thermal source $T_{\rm e} = 12$ MK from HXR spectrum - STEREO 195Å band enhancement (Fe XXIV λ 192 contribution) Downward motion $V_{\rm D} \sim 30$ km/s

Imada et al. (2013)

OBSERVATIONS

M 1.3 FLARE ON 2014 JAN 13

- Impulsive flare at the west limb
- Hinode/EIS scan observation with flare trigger
 - Sparse raster obs (3" jump)
 - 5 sec exposure / 6 raster scan with 9 min cadence

Flare brightening at loop footpoint

Expans

OBSERVATIONS

HINODE/XRT & REHSSI OBS. - HOT FLARING LOOP-TOP SOURCE

- Hot flaring loop exist before the M flare
- RHESSI obs. with blue (SXR) and red (HXR) contours
- Black contours: EIS 192Å window intensity

(f) HINODE XRT 13-Jan-2014 22:09:02 UT

ANALYSIS - SPECTROSCOPY

HINODE/EIS - DOPPLER VELOCITY OF FE XXIV

• 1st raster (at 21:50:44 UT): Flare start timing

(a) Total intensity map of Ca XVII 192.38 window

 1.5×10^{4}

 1.0×10^{4}

5.0×10

Weak red & blue shift at the loop-top (region C) Strong red shift above the loop-top (region D& E)

1				
L				

ANALYSIS - SPECTROSCOPY

HINODE/EIS - DOPPLER VELOCITY VELOCITY OF FE XXIV - Weak Doppler velocity • 2nd raster (at 21:59:39 UT): SXR flare peak time - Intensity enhancement at the loop-top

(a) Total intensity map of Ca XVII 192.38 window

Wavelength / Å

RESULTS - SPECTROSCOPY

THE STRUCTURE AND PLASMA DYNAMICS OF THE M 1.3 FLARE

• Doppler velocity - strong red shift along the loop (loop-top)

ANALYSIS - STEREOSCOPY

THE LOOP TILT ANGLE MEASURED FROM THE STEREOSCOPY USING THE STEREO/EUVI-A AND SDO/AIA

SDO-STEREO orbit

"ssc measure.pro"

 The loop orientation is away from us - the red shift flow indicates "upflow", 200~500 km/s

• Loop tilt angle from the cool jet and loop positions of two different spacecraft ~ 51 degree

ANALYSIS - IMAGING

SLIT-TIME DIAGRAM FROM SDO/AIA

RESULT - TEMPERATURE DISTRIBUTION

HEIGHT VARIATION OF THE TEMPERATURE

• Temperature distribution from the ratio between EIS Fe XXIV 255 and FeXXIII 263

Hinode/EIS 13-Jan-2014 21:50:44.000 UT

RESULT - COOLING PROCESS

LIGHT CURVES IN MULTI WAVELENGTHS FROM SDO/AIA

DISCUSSION & SUMMARY

MULTI-WAVELENGTH OBSERVATION OF LIMB FLARE

- We analyzed a limb flare (M1.3) using multi-wavelength observations
 - Hinode/EIS (Spectroscopic obs.)
 - STEREO/EUVI (Stereoscopic obs.)
 - SDO/AIA, Hinode/XRT, and RHESSI (imaging obs.)
- We investigated their plasma properties and flare loop configurations
 - We found hot red-shifted plasma (~500km/s) along the loop (especially looptop) which imply an evaporation flows considering temperature and 3D loop configuration
 - HXR source only observed at the flare loop footpoint brightening
 - Non-thermal velocity of the loop-top region is larger than 100 km/s.
 - The temperature structure from EIS Fe XXIV/XXIII ratio shows there are two hot plasma regions, loop-top and above the loop-top.
- We couldn't observe (expected features...)
 - Donwflows as the reconnection outflows
 - HXR emission at the above the loop-top regions

FUTURE WORK

COOLING PROCESS AFTER THE EVAPORATION

- Light curves of the AIA multi wavelength intensity images show the cooling process with time
 - The cooling time is different from the loop height
 - The observed temperature parameters can be used for the calculation cooling time (conductive and radiative cooling time)

SOURCE OF THE HOT PLASMA

- The hot plasma filled in the loop-top region
- We plan to check the abundance and density of the plasma at the loop-top (and along the loop) with time
 - Photospheric or coronal abundances
 - Comparison the density of plasma (from lower chromosphere or higher coronal source)
 - Evaporated plasma or cooling down plasma

