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Abstract — The growing popularity of small cost-effective 
satellites (SmallSats, CubeSats, etc.) creates the potential for a 
variety of new science applications involving multiple nodes 
functioning together to achieve a task, such as swarms and 
constellations. As this technology develops and is deployed for 
missions in Low Earth Orbit and beyond, the use of delay tolerant 
networking (DTN) techniques may improve communication 
capabilities within the network. In this paper, a network hierarchy 
is developed from heterogeneous networks of SmallSats, surface 
vehicles, relay satellites and ground stations which form an 
integrated network. There is a trade-off between complexity, 
flexibility, and scalability of user defined schedules versus 
autonomous routing as the number of nodes in the network 
increases. To address these issues, this work proposes a machine 
learning classifier based on DTN routing metrics. A framework is 
developed which will allow for the use of several categories of 
machine learning algorithms (decision tree, random forest, and 
deep learning) to be applied to a dataset of historical network 
statistics, which allows for the evaluation of algorithm complexity 
versus performance to be explored. We develop the emulation of a 
hierarchical network, consisting of tens of nodes which form a 
cognitive network architecture. CORE (Common Open Research 
Emulator) is used to emulate the network using bundle protocol 
and DTN IP neighbor discovery. 

Keywords—Delay tolerant networking, machine learning, 
opportunistic routing, feature engineering, autoencoders 

I. INTRODUCTION

The research areas of Delay Tolerant Networking (DTN) [1] 
and cognitive communications can be combined to improve 
quality of service, throughput (or goodput), and reduce 
operations costs for a variety of aerospace communication 
applications. This work explores the trade-offs for three 
different algorithmic approaches to apply machine learning to 
the task of opportunistic routing in a DTN, as well as other 
related networks such as mobile ad hoc networks (MANETS) 
and wireless sensor networks (WSN). Section I introduces the 
topic and provides a brief summary of delay tolerant 
networking. Section II, Problem Formulation, discusses the 
network architecture concept, the development of the dataset 
and feature vector. The complexity in terms of training times, 
required number of training examples, and handcrafted feature 
engineering are discussed for the selected methods of decision 
tree, random forest, and a neural network based autoencoder. 
Section III discusses the experimental emulation set up, the 

software tools used for the emulation, and emulation parameters. 
Section IV discusses the metrics used for the classifier 
performance evaluation, DTN routing metrics, and preliminary 
results. Section V concludes the paper with final comments and 
future work. 

Fig. 1 shows an example of a multi-hop network to 
demonstrate the routing problem studied in this paper. A deep 
space surface vehicle or other similar research asset transmits 
science data to orbiting satellites. There may be varying periods 
of accessibility from the surface vehicle to each relay as well as 
differing data rates for each link. Once data is transmitted to the 
orbiter satellites, they will transmit their data to a network of 
communication relay satellites. The relay satellites will forward 
the data to one of several available earth ground stations. In 
addition, though not shown in this picture for simplicity, the 
deep space surface vehicles as well as orbiter satellites may 
transmit data directly to earth. Typically, these direct to earth 
connections may be much slower when compared to the relay 
network.    

Figure 1. Multi-hop Network Example 

A. Delay Tolerant Networking
The NASA SCaN networks currently consist of the Near

Earth Network (NEN), the Space Network (SN) and the Deep 
Space Network (DSN) [2].  Within these networks, a variety of 
different protocol stacks are used. These protocols are intended 
to satisfy diverse requirements for specific environments. 
Roundtrip times may vary from less than a second for 
communication from Low Earth Orbit to Earth and up to 45 
minutes from the Earth surface to Mars [3]. Common protocol 
mechanisms such as acknowledgements can negatively impact 
performance and throughput for this type of deep space scenario. 
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Figure 2. Bundle Protocol Network Stack Example [6] 

The DTN architecture [1] and the Bundle Protocol (BP) [4] 
address the issues of heterogeneous network stacks as well as 
long periods of disconnection or unreliable contact. The Bundle 
Protocol uses a store and forward technique to mitigate these 
disruptions. Data will be stored when the network becomes 
unavailable and transmitted once connectivity is restored. Data 
can be transmitted to a destination without a known end-to-end 
path by relaying to nodes which may eventually come in contact 
with the destination. The Bundle Protocol creates an additional 
layer between the application layer and underlying transport, 
datalink, and physical layers within the protocol stack. This 
overlay concept abstracts away the differences in lower level 
details so that nodes may use a variety of different protocols 
from the transport to physical layers as appropriate for their 
particular conditions. 

Fig. 2 shows an example of the various protocols that could 
be used in a delay tolerant network consisting of a landed 
Martian rover, orbiter satellite, and various components of the 
ground segment needed to reach a science mission's control 
center. Nodes in close proximity together on a planet's surface 
may use a standard TCP based network. Long distance links 
such as a Mars relay to Earth may use protocols designed for 
extended distances such as the Licklider Transmission Protocol 
(LTP) [5]. The bundle layer will abstract away these differences, 
which will be handled by the lower level mechanisms. The 
bundle layer will be concerned with storage of the data until an 
appropriate transmission time, custody transfer of the data and 
routing of the data.  

B. Hierarchical Network Architecture 
In the routing problem studied in this paper, the network 

consists of a set of small mobile nodes which send data to one 
or more potential relay satellites or data mules. A set of “worker 
nodes,” such as SmallSats, picosatellites, CubeSats, etc. 
perform a series of tasks such as image collection or various 
sensing applications.  Within the network there is one or more 
central nodes which can be used to store, process, and relay 
data. This alleviates the need for extensive data storage and 
processing capacity on the smaller nodes. Arslan et al. [7] 
develop such an architecture focused on the use of picosatellites 
which acts a constellation to complete tasks currently done by 
large multifunctional satellites. The network forms a 
hierarchical structure with small mobile nodes at the lowest 
level, relay satellites at the intermediate level, and the ground 

segment on earth as the top level of the network structure. In 
this work we propose that this architecture also lends itself 
toward implementing supervised and unsupervised learning 
methods that will allow for intelligent data routing and node 
self-organization. Fig. 3 shows an example of this concept. 

 
Figure 3. Hierarchical Network Example 

The network hierarchy allows for a large amount of data to 
be stored from multiple nodes and to create a more complete 
picture of the network. This centralization allows for the use of 
powerful processors and graphics processing units which would 
be impractical on very resource constrained nodes such as 
picosatellites and SmallSats. This method allows more data to 
be available to the learning algorithm, does not require constant 
communication between the central node and worker nodes, 
and allows algorithms to be trained offline and simply deploy 
the trained model to each worker node. 

II. PROBLEM FORMULATION 
There are three main issues we will focus on in terms of the 

complexity of each learning method. They are the amount of 
training data required to successfully construct a reasonable 
representation of the network, the amount of time spent on 
feature engineering and data preparation, and the training time 
required for each algorithm. We do not consider the processing 
time for prediction on each node that the routing algorithm will 
be deployed on since the model will be trained prior to 
deployment and each solution can be simplified into a series of 
source, destination, current time, and preferred neighbor tuples. 

A. Training Times 
The simplest method we explore is the ID3 decision tree. 

Decision trees construct a graph like tree structure based on a 
series of yes or no decision criteria as learned by associating 
frequency of occurrences of a specific label value with a 
specific attribute value. The ID3 decision tree algorithm uses 
information gain, a function based on the entropy of a training 
data set to determine which attributes should be used as the root 
decision of the tree, following down through the lower branches 
of the tree [8]. Information gain is used to determine the 
relevance of each variable to predicting the category label; it is 



 

the amount of information gained about the label from 
observing a specific attribute. The attribute which has the 
greatest information gain is selected as the root node, and is 
then evaluated recursively to generate the rest of the tree 
structure. The complexity of a decision tree with n attributes 
and m training samples is O(n×m log m) [9]. 

The next method we explore is the random forest algorithm 
[10]. The random forest is an ensemble of decision trees. A 
detailed analysis of the model is given in [11]. Intuitively, an 
estimate for the complexity of a random forest can be given by 
O(M(n×m log m)), where again n is the number of attributes in 
each tree, m is the number of samples and M is the number of 
trees created.  

Finally, we develop an autoencoder to attempt to determine 
relevant features from the network data without the need for 
extensive manual feature engineering. Autoencoders attempt to 
reconstruct their input data set by developing encoding and 
decoding functions that minimize the error between the input 
data and reconstructed data. While it is more complicated to 
determine the complexity of the algorithm, we estimate the 
training complexity to be O((N+F)DI), where F is the 
dimension of the node feature vector, N is the number of nodes, 
D is the size of the hidden layer, and I is the number of iterations 
[12]. 

B. Sample Size 
There is a trade-off between analyzing large amounts of 

data in hopes of increasing model accuracy versus the amount 
of processing time and associated costs. While the volume of 
training data available does impact model performance, the 
number of variables within the dataset also has a significant 
impact on the selected analysis method. Data mining and 
machine learning techniques provide insight into complex 
relationships between variables beyond merely processing 
large volumes of data. Indeed, decision tree based methods are 
known to be subject to over-fitting with large amounts of data. 
A variety of pruning algorithms have been developed to 
compensate for this problem. Morgan et al. [13] note that 
decision tree accuracy increases with sample size, attaining 
performance within 0.5 percent of terminal accuracy often with 
datasets of the order of 10,000 samples. 

C. Feature Engineering and Problem Formulation 
While decision trees and the ensemble approach of random 

forests are intuitive to understand for basic problems, the 
success of the algorithm largely depends on what features have 
been selected for the model. In previous work, we developed a 
multi-label approach which aims to reconstruct satisfactory 
routing paths based on the feature vector of the source node id, 
the neighboring node in question for forwarding, the destination 
node, and the current time [14]. This method essentially takes 
into account the frequency or count of messages successfully 
delivered based on which nodes they had visited and at what 
time.  

The drawback of this method is that there many additional 
variables that impact the network and routing performance that 
are not taken into account. Information such as the physical 
location of the node can be utilized as a feature using 

unsupervised techniques such as clustering [15]. Additional 
information such as the bundle delivery ratio per node, the 
number of retransmissions or failed attempts, and the delivery 
delay are not taken into account. While delivery delay may 
seem to be the best performance indictor in many traditional 
networking scenarios, this does not hold for delay tolerant 
networks. The delay may be a characteristic of the network 
itself such as a variable round trip time based on current 
location in an orbit, or unrelated disruptions. Therefore the 
correlation with algorithm performance and delivery delay is 
not easily discernable. It is in this case that one of the many 
strengths of deep learning may be beneficial. Deep learning can 
be used to automate feature engineering, saving engineering 
time spent on determining relevant features in the data and 
formulating the problem based on patterns in the data that may 
be difficult to manually detect or represent.  

III. EXPERIMENTAL IMPLEMENTATION 
    Fig. 4 shows the machine learning workflow as described in 
[16] and how it relates to the emulation process developed in 
this work. The learning phases consist of data collection, data 
analysis, model construction, model validation, and 
deployment.  
    The data collection phase is done using CORE (Common 
Open Research Emulator) [17]. CORE uses Linux containers to 
create light weight virtual machines that can run custom 
protocols, Python and shell scripts, and other programs just as 
any host machine would. IBR-DTN [18] is used as the DTN 
bundle agent on each node, utilizing the Bundle Protocol, 
TCP/IP convergence layer and DTN IP Neighbor Discovery 
(IPND). During the data collection phase, routing is done using 
epidemic routing [19]. Each node sends bundles at a specified 
interval to a list of randomly generated destinations. Logs are 
kept of when the bundles were sent, delivered, and which nodes 
each bundle was forwarded to.  
 

 
Figure 4. Network emulation and learning workflow 

     The emulation consists of 20 nodes with the node radio 
range set to 250 m and the data rate is varied over emulations 
from 10 kbps to 1 Mbps. The nodes move on a grid based on 
pixel locations which correspond to longitude and latitude 
coordinates defined by the user. BonnMotion was used to create 



 

the mobility scripts for each node based on the Random Walk 
mobility model [20]. BonnMotion is a suite of mathematical 
mobility models which build scenarios of a specified length of 
time in which object coordinates are varied according to the 
selected model. Object speed, boundary behaviors, coordinate 
scales, and many other parameters are configurable. These 
generated coordinates are translated to the CORE canvas and 
used for node position and link range determination.  Fig. 5 
shows a screen shot of the CORE emulation. The link between 
each node is green when communication is possible and 
disappears when the node moves out of range. 
 
 

 
Figure 5. Subset of CORE Network Emulation 

     After the emulation has completed, the next phase in the 
workflow is data analysis. Logs of the network behavior are 
processed into the format of a feature vector and label. For this 
series of experiments, the feature vector consists of the bundle 
id, the source node number, destination node number, the 
current node in possession of the bundle, the node the bundle 
will be forwarded to, and an integer time index representing the 
current time period. The total emulation time is divided into one 
minute increments and this index indicates which minute this 
data was obtained from. This is done to turn the timestamp into 
a discrete feature for learning. Each of these feature vectors are 
labelled with a binary indicator representing if the bundle was 
ultimately delivered to the final destination or not. This is 
perhaps the simplest data format possible with the most limited 
amount of manual feature engineering, since in this experiment 
it is desired to see how each algorithm will determine the most 
important features in the data. The promise of using more 
complex models such as an autoencoder versus decision tree 
would be that the algorithm itself would eliminate the need for 
manual feature engineering. 
    The next step in our process is constructing the model. For 
these experiments the decision tree, random forest, and an 
autoencoder were each trained on the data set generated in the 
prior learning phase. This was done using Scikit-learn [21] for 
the decision tree and random forest, and Keras [22] and 
TensorFlow [23] for the autoencoder. Similarly, the model 
validation is done using K-fold cross validation and scoring 
metrics available in Scikit-learn. Once a satisfactory model is 
obtained, it is exported for use in a new emulation. 

    The final step in the workflow, deployment is done in a 
similar emulation as the data collection phase. However in this 
step, rather than using epidemic routing, a classification based 
routing extension is used. This routing extension uses the 
trained model to predict which neighbor is the most reliable 
neighbor to forward the bundle to base on the model delivery 
prediction. Fig. 6 shows a block diagram of the classification 
routing extension that has been developed in this work, based 
on IBR-DTN. 
   IBR-DTN, Instituts für Betriebssysteme und Rechnerverbund 
(Institute of Operating Systems and Computer Networks) Delay 
Tolerant Network, is a bundle protocol implementation 
developed at the Technical University of Braunschweig [18]. It 
is focused on minimizing resource consumption for embedded 
applications and uses an event based architecture. Routing 
extensions can be developed using C++ inheritance from a base 
router class. Various events within the node such as new 
bundles being queued or bundle transfer completed will trigger 
a new search for bundles to be sent to available neighbors. 
Summary vectors of bundles already known to neighboring 
nodes are maintained and used as filtering criteria for new 
bundles to be sent. This eliminates the transmission of many 
redundant bundles. Other criteria such as hop limits are also 
used in the bundle filter criteria. The algorithm employed in this 
work adds an additional filtering criteria based on the predicted 
likelihood of delivery.   
 

 
Figure 6. Classification Routing Extension 

 



 

IV. EVALUATION 
    The performance of the classification based routing method 
is evaluated in two steps. First the model itself must be 
evaluated using traditional machine learning metrics to 
determine if it is able to accurately predict bundle delivery 
based on the data set. After this is completed, the model is used 
in the routing extension and the overall performance is 
evaluated with DTN routing metrics. 
    Since the purpose of this work is to evaluate the tradeoff 
between simpler algorithms such as the decision tree, ensemble 
methods, or more complex deep learning methods, the first 
metric examined is the training time. Table I shows the average 
training time for each algorithm used. 

TABLE I.  MODEL TRAINING TIMES 

Model Training Times 

Algorithm Training Time (s)  

Decision Tree 0.05  
Random Forest, 
depth 2 0.77 

Autoencoder 323.36 

 
    The machine learning metrics used to score each model were 
AUROC (Area Under Receiver Operating Characteristic) 
curve, accuracy, precision, recall, and F1 score. These metrics 
are typically considered unitless and written either as a ratio 
between 0 and 1, or a percentage from 0 to 100. In all cases, a 
larger value indicates better performance.  
    In addition, the most important features determined by each 
model were examined. It was found that the source node was 
the most important feature in the first series of tests. However, 
the source of a bundle does not supply any information on how 
the bundle should be forwarded, other than to avoid routing 
loops back to the original sender.  It was decided to eliminate 
this feature, since it dominates the model without providing 
useful information. Another series of training and scoring was 
performed with the source node removed from the feature 
vector. The results are shown in Fig. 7 through 11. The blue 
metrics indicate training with the source feature and green 
indicates training without it.  It can be seen that for their 
simplicity, decision trees perform acceptably well when 
compared to the random forest and the autoencoder, while 
having a much shorter training time. It should be noted that the 
set of features used in this example were quite simple and the 
use of additional features could further complicate the model 
and require more sophisticated methods. 
    Finally the trained model is used in the classification routing 
extension and its results are compared to epidemic routing. It is 
expected that epidemic will have a higher bundle delivery ratio 
since in this instance, all bundles unknown to the neighboring 
node are replicated. The classification based routing method 
only replicates bundles when it predicts that the neighboring 
node will be associated with delivering the bundle to the final 
destination. This reduces the amount of unnecessary overhead 
and processing. Since fewer unneeded bundles occupy storage 
and transmissions queues, fewer bundles expire as compared to 

epidemic routing. These results are shown in Fig. 12 and 13. 
The emulations were performed with varying node data rates 
and bundle time-to-live (TTL) in order to evaluate the impact 
on bundle expiration. 
 

 
 

Figure 7. AUROC with and without source feature 

 

 
 

Figure 8. Accuracy with and without source feature 

 

 
 

Figure 9. Precision with and without source feature 



 

 
 

Figure 10. Recall with and without source feature 

 

 
 

Figure 11. F1 Score with and without source feature 

 

 
Figure 12. Bundle Delivery Ratio 

 

 
Figure 13. Bundles Expired 

 

V. CONCLUSION 
    In summary, this work discusses some of the basic concepts 
and protocols of delay tolerant networking (DTN). A network 
architecture of relay nodes is described, with implications to the 
design of a cognitive network based on machine learning 
models in mind. Several common machine learning techniques 
(decision trees, random forest, and neural network autoencoder) 
are evaluated for use in an intelligent routing scheme. IBR-
DTN was used as the base bundle protocol implementation and 
CORE was used to emulate the network. The emulated network 
serves to generate the learning dataset, as well as to test the 
classification based routing extension. Common machine 
learning metrics were used to score the trained model and DTN 
routing metrics were used to evaluate the routing extension 
performance. It was found that for this particular dataset, the 
simple decision tree based model performed sufficiently well. 
It is reasonable to suspect that this might not always be true 
when applied to more complex datasets. 

In conclusion, for very simple features, basic machine 
learning methods may be sufficient for satisfactory 
performance when compared to more advanced deep learning 
models. The advantage of methods such as the autoencoder is 
that it eliminates the need for hand developed feature 
engineering in data where it may be difficult to determine what 
features are relevant.  

For future work, we are interested in expanding our dataset 
with more information such as node location/position, buffer 
capacity, and retransmission attempts. This will perhaps 
provide a more complex model that will leverage the insight of 
deep learning models. In addition, other machine learning 
techniques can continue to be explored, such as reinforcement 
learning. A variety of techniques may prove to be better suited 
for a particular application and architecture. 
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