
Evaluation of Classifier Complexity for Delay
Tolerant Network Routing

Rachel Dudukovich
Flight Software Branch

NASA Glenn Research Center
Cleveland, OH 44135

rachel.m.dudukovich@nasa.gov

Gilbert Clark
Secure Networks, System Integration

and Test Branch
NASA Glenn Research Center

Cleveland, OH 44135
gilbert.j.clark@nasa.gov

Christos Papachristou
Electrical, Computer, and Systems

Engineering
Case Western Reserve University

Cleveland, OH 44106
cap2@case.edu

Abstract — The growing popularity of small cost-effective
satellites (SmallSats, CubeSats, etc.) creates the potential for a
variety of new science applications involving multiple nodes
functioning together to achieve a task, such as swarms and
constellations. As this technology develops and is deployed for
missions in Low Earth Orbit and beyond, the use of delay tolerant
networking (DTN) techniques may improve communication
capabilities within the network. In this paper, a network hierarchy
is developed from heterogeneous networks of SmallSats, surface
vehicles, relay satellites and ground stations which form an
integrated network. There is a trade-off between complexity,
flexibility, and scalability of user defined schedules versus
autonomous routing as the number of nodes in the network
increases. To address these issues, this work proposes a machine
learning classifier based on DTN routing metrics. A framework is
developed which will allow for the use of several categories of
machine learning algorithms (decision tree, random forest, and
deep learning) to be applied to a dataset of historical network
statistics, which allows for the evaluation of algorithm complexity
versus performance to be explored. We develop the emulation of a
hierarchical network, consisting of tens of nodes which form a
cognitive network architecture. CORE (Common Open Research
Emulator) is used to emulate the network using bundle protocol
and DTN IP neighbor discovery.

Keywords—Delay tolerant networking, machine learning,
opportunistic routing, feature engineering, autoencoders

I. INTRODUCTION

The research areas of Delay Tolerant Networking (DTN) [1]
and cognitive communications can be combined to improve
quality of service, throughput (or goodput), and reduce
operations costs for a variety of aerospace communication
applications. This work explores the trade-offs for three
different algorithmic approaches to apply machine learning to
the task of opportunistic routing in a DTN, as well as other
related networks such as mobile ad hoc networks (MANETS)
and wireless sensor networks (WSN). Section I introduces the
topic and provides a brief summary of delay tolerant
networking. Section II, Problem Formulation, discusses the
network architecture concept, the development of the dataset
and feature vector. The complexity in terms of training times,
required number of training examples, and handcrafted feature
engineering are discussed for the selected methods of decision
tree, random forest, and a neural network based autoencoder.
Section III discusses the experimental emulation set up, the

software tools used for the emulation, and emulation parameters.
Section IV discusses the metrics used for the classifier
performance evaluation, DTN routing metrics, and preliminary
results. Section V concludes the paper with final comments and
future work.

Fig. 1 shows an example of a multi-hop network to
demonstrate the routing problem studied in this paper. A deep
space surface vehicle or other similar research asset transmits
science data to orbiting satellites. There may be varying periods
of accessibility from the surface vehicle to each relay as well as
differing data rates for each link. Once data is transmitted to the
orbiter satellites, they will transmit their data to a network of
communication relay satellites. The relay satellites will forward
the data to one of several available earth ground stations. In
addition, though not shown in this picture for simplicity, the
deep space surface vehicles as well as orbiter satellites may
transmit data directly to earth. Typically, these direct to earth
connections may be much slower when compared to the relay
network.

Figure 1. Multi-hop Network Example

A. Delay Tolerant Networking
The NASA SCaN networks currently consist of the Near

Earth Network (NEN), the Space Network (SN) and the Deep
Space Network (DSN) [2]. Within these networks, a variety of
different protocol stacks are used. These protocols are intended
to satisfy diverse requirements for specific environments.
Roundtrip times may vary from less than a second for
communication from Low Earth Orbit to Earth and up to 45
minutes from the Earth surface to Mars [3]. Common protocol
mechanisms such as acknowledgements can negatively impact
performance and throughput for this type of deep space scenario.

mailto:rachel.m.dudukovich@nasa.gov
mailto:gilbert.j.clark@nasa.gov
mailto:cap2@case.edu

Figure 2. Bundle Protocol Network Stack Example [6]

The DTN architecture [1] and the Bundle Protocol (BP) [4]
address the issues of heterogeneous network stacks as well as
long periods of disconnection or unreliable contact. The Bundle
Protocol uses a store and forward technique to mitigate these
disruptions. Data will be stored when the network becomes
unavailable and transmitted once connectivity is restored. Data
can be transmitted to a destination without a known end-to-end
path by relaying to nodes which may eventually come in contact
with the destination. The Bundle Protocol creates an additional
layer between the application layer and underlying transport,
datalink, and physical layers within the protocol stack. This
overlay concept abstracts away the differences in lower level
details so that nodes may use a variety of different protocols
from the transport to physical layers as appropriate for their
particular conditions.

Fig. 2 shows an example of the various protocols that could
be used in a delay tolerant network consisting of a landed
Martian rover, orbiter satellite, and various components of the
ground segment needed to reach a science mission's control
center. Nodes in close proximity together on a planet's surface
may use a standard TCP based network. Long distance links
such as a Mars relay to Earth may use protocols designed for
extended distances such as the Licklider Transmission Protocol
(LTP) [5]. The bundle layer will abstract away these differences,
which will be handled by the lower level mechanisms. The
bundle layer will be concerned with storage of the data until an
appropriate transmission time, custody transfer of the data and
routing of the data.

B. Hierarchical Network Architecture
In the routing problem studied in this paper, the network

consists of a set of small mobile nodes which send data to one
or more potential relay satellites or data mules. A set of “worker
nodes,” such as SmallSats, picosatellites, CubeSats, etc.
perform a series of tasks such as image collection or various
sensing applications. Within the network there is one or more
central nodes which can be used to store, process, and relay
data. This alleviates the need for extensive data storage and
processing capacity on the smaller nodes. Arslan et al. [7]
develop such an architecture focused on the use of picosatellites
which acts a constellation to complete tasks currently done by
large multifunctional satellites. The network forms a
hierarchical structure with small mobile nodes at the lowest
level, relay satellites at the intermediate level, and the ground

segment on earth as the top level of the network structure. In
this work we propose that this architecture also lends itself
toward implementing supervised and unsupervised learning
methods that will allow for intelligent data routing and node
self-organization. Fig. 3 shows an example of this concept.

Figure 3. Hierarchical Network Example

The network hierarchy allows for a large amount of data to
be stored from multiple nodes and to create a more complete
picture of the network. This centralization allows for the use of
powerful processors and graphics processing units which would
be impractical on very resource constrained nodes such as
picosatellites and SmallSats. This method allows more data to
be available to the learning algorithm, does not require constant
communication between the central node and worker nodes,
and allows algorithms to be trained offline and simply deploy
the trained model to each worker node.

II. PROBLEM FORMULATION
There are three main issues we will focus on in terms of the

complexity of each learning method. They are the amount of
training data required to successfully construct a reasonable
representation of the network, the amount of time spent on
feature engineering and data preparation, and the training time
required for each algorithm. We do not consider the processing
time for prediction on each node that the routing algorithm will
be deployed on since the model will be trained prior to
deployment and each solution can be simplified into a series of
source, destination, current time, and preferred neighbor tuples.

A. Training Times
The simplest method we explore is the ID3 decision tree.

Decision trees construct a graph like tree structure based on a
series of yes or no decision criteria as learned by associating
frequency of occurrences of a specific label value with a
specific attribute value. The ID3 decision tree algorithm uses
information gain, a function based on the entropy of a training
data set to determine which attributes should be used as the root
decision of the tree, following down through the lower branches
of the tree [8]. Information gain is used to determine the
relevance of each variable to predicting the category label; it is

the amount of information gained about the label from
observing a specific attribute. The attribute which has the
greatest information gain is selected as the root node, and is
then evaluated recursively to generate the rest of the tree
structure. The complexity of a decision tree with n attributes
and m training samples is O(n×m log m) [9].

The next method we explore is the random forest algorithm
[10]. The random forest is an ensemble of decision trees. A
detailed analysis of the model is given in [11]. Intuitively, an
estimate for the complexity of a random forest can be given by
O(M(n×m log m)), where again n is the number of attributes in
each tree, m is the number of samples and M is the number of
trees created.

Finally, we develop an autoencoder to attempt to determine
relevant features from the network data without the need for
extensive manual feature engineering. Autoencoders attempt to
reconstruct their input data set by developing encoding and
decoding functions that minimize the error between the input
data and reconstructed data. While it is more complicated to
determine the complexity of the algorithm, we estimate the
training complexity to be O((N+F)DI), where F is the
dimension of the node feature vector, N is the number of nodes,
D is the size of the hidden layer, and I is the number of iterations
[12].

B. Sample Size
There is a trade-off between analyzing large amounts of

data in hopes of increasing model accuracy versus the amount
of processing time and associated costs. While the volume of
training data available does impact model performance, the
number of variables within the dataset also has a significant
impact on the selected analysis method. Data mining and
machine learning techniques provide insight into complex
relationships between variables beyond merely processing
large volumes of data. Indeed, decision tree based methods are
known to be subject to over-fitting with large amounts of data.
A variety of pruning algorithms have been developed to
compensate for this problem. Morgan et al. [13] note that
decision tree accuracy increases with sample size, attaining
performance within 0.5 percent of terminal accuracy often with
datasets of the order of 10,000 samples.

C. Feature Engineering and Problem Formulation
While decision trees and the ensemble approach of random

forests are intuitive to understand for basic problems, the
success of the algorithm largely depends on what features have
been selected for the model. In previous work, we developed a
multi-label approach which aims to reconstruct satisfactory
routing paths based on the feature vector of the source node id,
the neighboring node in question for forwarding, the destination
node, and the current time [14]. This method essentially takes
into account the frequency or count of messages successfully
delivered based on which nodes they had visited and at what
time.

The drawback of this method is that there many additional
variables that impact the network and routing performance that
are not taken into account. Information such as the physical
location of the node can be utilized as a feature using

unsupervised techniques such as clustering [15]. Additional
information such as the bundle delivery ratio per node, the
number of retransmissions or failed attempts, and the delivery
delay are not taken into account. While delivery delay may
seem to be the best performance indictor in many traditional
networking scenarios, this does not hold for delay tolerant
networks. The delay may be a characteristic of the network
itself such as a variable round trip time based on current
location in an orbit, or unrelated disruptions. Therefore the
correlation with algorithm performance and delivery delay is
not easily discernable. It is in this case that one of the many
strengths of deep learning may be beneficial. Deep learning can
be used to automate feature engineering, saving engineering
time spent on determining relevant features in the data and
formulating the problem based on patterns in the data that may
be difficult to manually detect or represent.

III. EXPERIMENTAL IMPLEMENTATION
 Fig. 4 shows the machine learning workflow as described in
[16] and how it relates to the emulation process developed in
this work. The learning phases consist of data collection, data
analysis, model construction, model validation, and
deployment.
 The data collection phase is done using CORE (Common
Open Research Emulator) [17]. CORE uses Linux containers to
create light weight virtual machines that can run custom
protocols, Python and shell scripts, and other programs just as
any host machine would. IBR-DTN [18] is used as the DTN
bundle agent on each node, utilizing the Bundle Protocol,
TCP/IP convergence layer and DTN IP Neighbor Discovery
(IPND). During the data collection phase, routing is done using
epidemic routing [19]. Each node sends bundles at a specified
interval to a list of randomly generated destinations. Logs are
kept of when the bundles were sent, delivered, and which nodes
each bundle was forwarded to.

Figure 4. Network emulation and learning workflow

 The emulation consists of 20 nodes with the node radio
range set to 250 m and the data rate is varied over emulations
from 10 kbps to 1 Mbps. The nodes move on a grid based on
pixel locations which correspond to longitude and latitude
coordinates defined by the user. BonnMotion was used to create

the mobility scripts for each node based on the Random Walk
mobility model [20]. BonnMotion is a suite of mathematical
mobility models which build scenarios of a specified length of
time in which object coordinates are varied according to the
selected model. Object speed, boundary behaviors, coordinate
scales, and many other parameters are configurable. These
generated coordinates are translated to the CORE canvas and
used for node position and link range determination. Fig. 5
shows a screen shot of the CORE emulation. The link between
each node is green when communication is possible and
disappears when the node moves out of range.

Figure 5. Subset of CORE Network Emulation

 After the emulation has completed, the next phase in the
workflow is data analysis. Logs of the network behavior are
processed into the format of a feature vector and label. For this
series of experiments, the feature vector consists of the bundle
id, the source node number, destination node number, the
current node in possession of the bundle, the node the bundle
will be forwarded to, and an integer time index representing the
current time period. The total emulation time is divided into one
minute increments and this index indicates which minute this
data was obtained from. This is done to turn the timestamp into
a discrete feature for learning. Each of these feature vectors are
labelled with a binary indicator representing if the bundle was
ultimately delivered to the final destination or not. This is
perhaps the simplest data format possible with the most limited
amount of manual feature engineering, since in this experiment
it is desired to see how each algorithm will determine the most
important features in the data. The promise of using more
complex models such as an autoencoder versus decision tree
would be that the algorithm itself would eliminate the need for
manual feature engineering.
 The next step in our process is constructing the model. For
these experiments the decision tree, random forest, and an
autoencoder were each trained on the data set generated in the
prior learning phase. This was done using Scikit-learn [21] for
the decision tree and random forest, and Keras [22] and
TensorFlow [23] for the autoencoder. Similarly, the model
validation is done using K-fold cross validation and scoring
metrics available in Scikit-learn. Once a satisfactory model is
obtained, it is exported for use in a new emulation.

 The final step in the workflow, deployment is done in a
similar emulation as the data collection phase. However in this
step, rather than using epidemic routing, a classification based
routing extension is used. This routing extension uses the
trained model to predict which neighbor is the most reliable
neighbor to forward the bundle to base on the model delivery
prediction. Fig. 6 shows a block diagram of the classification
routing extension that has been developed in this work, based
on IBR-DTN.
 IBR-DTN, Instituts für Betriebssysteme und Rechnerverbund
(Institute of Operating Systems and Computer Networks) Delay
Tolerant Network, is a bundle protocol implementation
developed at the Technical University of Braunschweig [18]. It
is focused on minimizing resource consumption for embedded
applications and uses an event based architecture. Routing
extensions can be developed using C++ inheritance from a base
router class. Various events within the node such as new
bundles being queued or bundle transfer completed will trigger
a new search for bundles to be sent to available neighbors.
Summary vectors of bundles already known to neighboring
nodes are maintained and used as filtering criteria for new
bundles to be sent. This eliminates the transmission of many
redundant bundles. Other criteria such as hop limits are also
used in the bundle filter criteria. The algorithm employed in this
work adds an additional filtering criteria based on the predicted
likelihood of delivery.

Figure 6. Classification Routing Extension

IV. EVALUATION
 The performance of the classification based routing method
is evaluated in two steps. First the model itself must be
evaluated using traditional machine learning metrics to
determine if it is able to accurately predict bundle delivery
based on the data set. After this is completed, the model is used
in the routing extension and the overall performance is
evaluated with DTN routing metrics.
 Since the purpose of this work is to evaluate the tradeoff
between simpler algorithms such as the decision tree, ensemble
methods, or more complex deep learning methods, the first
metric examined is the training time. Table I shows the average
training time for each algorithm used.

TABLE I. MODEL TRAINING TIMES

Model Training Times

Algorithm Training Time (s)

Decision Tree 0.05
Random Forest,
depth 2 0.77

Autoencoder 323.36

 The machine learning metrics used to score each model were
AUROC (Area Under Receiver Operating Characteristic)
curve, accuracy, precision, recall, and F1 score. These metrics
are typically considered unitless and written either as a ratio
between 0 and 1, or a percentage from 0 to 100. In all cases, a
larger value indicates better performance.
 In addition, the most important features determined by each
model were examined. It was found that the source node was
the most important feature in the first series of tests. However,
the source of a bundle does not supply any information on how
the bundle should be forwarded, other than to avoid routing
loops back to the original sender. It was decided to eliminate
this feature, since it dominates the model without providing
useful information. Another series of training and scoring was
performed with the source node removed from the feature
vector. The results are shown in Fig. 7 through 11. The blue
metrics indicate training with the source feature and green
indicates training without it. It can be seen that for their
simplicity, decision trees perform acceptably well when
compared to the random forest and the autoencoder, while
having a much shorter training time. It should be noted that the
set of features used in this example were quite simple and the
use of additional features could further complicate the model
and require more sophisticated methods.
 Finally the trained model is used in the classification routing
extension and its results are compared to epidemic routing. It is
expected that epidemic will have a higher bundle delivery ratio
since in this instance, all bundles unknown to the neighboring
node are replicated. The classification based routing method
only replicates bundles when it predicts that the neighboring
node will be associated with delivering the bundle to the final
destination. This reduces the amount of unnecessary overhead
and processing. Since fewer unneeded bundles occupy storage
and transmissions queues, fewer bundles expire as compared to

epidemic routing. These results are shown in Fig. 12 and 13.
The emulations were performed with varying node data rates
and bundle time-to-live (TTL) in order to evaluate the impact
on bundle expiration.

Figure 7. AUROC with and without source feature

Figure 8. Accuracy with and without source feature

Figure 9. Precision with and without source feature

Figure 10. Recall with and without source feature

Figure 11. F1 Score with and without source feature

Figure 12. Bundle Delivery Ratio

Figure 13. Bundles Expired

V. CONCLUSION
 In summary, this work discusses some of the basic concepts
and protocols of delay tolerant networking (DTN). A network
architecture of relay nodes is described, with implications to the
design of a cognitive network based on machine learning
models in mind. Several common machine learning techniques
(decision trees, random forest, and neural network autoencoder)
are evaluated for use in an intelligent routing scheme. IBR-
DTN was used as the base bundle protocol implementation and
CORE was used to emulate the network. The emulated network
serves to generate the learning dataset, as well as to test the
classification based routing extension. Common machine
learning metrics were used to score the trained model and DTN
routing metrics were used to evaluate the routing extension
performance. It was found that for this particular dataset, the
simple decision tree based model performed sufficiently well.
It is reasonable to suspect that this might not always be true
when applied to more complex datasets.

In conclusion, for very simple features, basic machine
learning methods may be sufficient for satisfactory
performance when compared to more advanced deep learning
models. The advantage of methods such as the autoencoder is
that it eliminates the need for hand developed feature
engineering in data where it may be difficult to determine what
features are relevant.

For future work, we are interested in expanding our dataset
with more information such as node location/position, buffer
capacity, and retransmission attempts. This will perhaps
provide a more complex model that will leverage the insight of
deep learning models. In addition, other machine learning
techniques can continue to be explored, such as reinforcement
learning. A variety of techniques may prove to be better suited
for a particular application and architecture.

REFERENCES

[1] V. Cerf, S. Burleigh, and K. Fall, “Delay-tolerant
networking architecture,” https://tools.ietf.org/html/rfc4838,
04 2007.

[2] “Space Communications and Navigation (SCaN) Network
Architecture Definition Document (ADD),” National
Aeronautics and Space Administration, Tech. Rep., 2014.

[3] The Consultative Committee for Space Data Systems ,
“Cislunar space internetworking architecture,” The
Consultative Committee for Space Data Systems , Tech. Rep.,
2006.

[4] K. Scott and S. Burleigh, “Bundle Protocol
Specification,” https://tools.ietf.org/html/rfc5050, 2007.

[5] M. Ramadas, S. Burleigh, and S. Farrell, “Licklider
Transmission Protocol-Specification, RFC 5326,” https://-
tools.ietf.org/html/rfc5326, 2008.

[6] The Consultative Committee for Space Data Systems,
Rationale, Scenarios, and Requirements for DTN in Space,
2010.

[7] T. Arslan, et al., “Espacenet: A framework of evolvable
and reconfigurable sensor networks for aerospace-based
monitoring and diagnostics,” in First NASA/ESA Conference
on Adaptive Hardware and Systems (AHS’06), June 2006, pp.
323–329.

[8] T. Mitchell, Machine Learning, C. I. Liu, Ed. McGraw-
Hill, 1997.

[9] M. H. C. P. I. Witten, E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, C. Kent, Ed.
Morgan Kaufmann, 2011.

[10] L. Breiman, “Random forests,” Machine Learning,
vol. 45, Oct. 2001.

[11] G. Biau, “Analysis of a random forests model,” J. Mach.
Learn. Res., vol. 13, no. 1, pp. 1063–1095, Apr. 2012.

[12] P. V. Tran, “Learning to make predictions on graphs with
autoencoders,” 2018 IEEE 5th International Conference on
Data Science and Advanced Analytics (DSAA), pp. 237–245,
2018.

[13] J. Morgan, “Sample size and modeling accuracy of
decision tree based data mining tools,” 2003.

[14] R. Dudukovich and C. Papachristou, “Delay tolerant
network routing as a machine learning classification problem,”
in Proceedings of The NASA/ESA Conference on Adaptive
Hardware and Systems, Edinburgh, UK, 2018.

[15] R. Dudukovich, “Application of machine learning
techniques to delay tolerant network routing,” Ph.D.
dissertation, Case Western Reserve University, 2019.

[16] M. Wang, et al., “Machine learning for networking:
Workflow, advances and opportunities,” CoRR, vol.
abs/1709.08339, 2017.

[17] J. Ahrenholz, “Comparison of CORE Network Emulation
Platforms,” in Proceedings of the 2010 IEEE Military
Communications Conference. IEEE, 2010, pp. 166–171.

[18] J. Morgenroth, “IBR-DTN - A Modular and Lightweight
Implementation of the Bundle Protocol,” https://github.com/-
ibrdtn/ibrdtn.

[19] A. Vahdat and D. Becker, “Epidemic routing for partially-
connected ad hoc networks,” 2000.

[20] “BonnMotion A Mobility Scenario Generation and
Analysis Tool,” http://sys.cs.uos.de/bonnmotion/.

[21] F. Pedregosa, et al. , “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[22] F. Chollet et al., “Keras,” https://keras.io, 2015.

[23] M. Abadi, et al. “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://-
www.tensorflow

https://tools.ietf.org/html/rfc4838,
https://tools.ietf.org/html/rfc5050,
https://-
https://github.com/-
http://sys.cs.uos.de/bonnmotion/.
https://keras.io,
https://-

