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Overview 
For years, NASA had a very straightforward process for replacing high-performance computing 

hardware: over a three-year period, when it became more expensive to operate an older suite of 

hardware than it did to replace it with new products that could accomplish the same work, we 

simply replaced the old hardware. For NASA’s High-End Computing Capability (HECC) 

Project, that process changed when we reached the limits of our facility’s power, cooling, and 

floor-loading capacity, becoming a strategy of decommissioning the least productive hardware 

and replacing it with more capable counterparts. The impact was that we provided our users with 

less supercomputing capability than we would have without the limitations. 

Additionally, with 25% of our total power consumption going to cool our systems and 50,000 

gallons of water per day being evaporated, we wanted a solution that would expand our compute 

facility while being sensitive to the impact on our environment. 

 

Project Details 
 

The facility housing HECC systems is located at NASA’s Ames Research Center, near the 

southern end of the San Francisco Bay. The area’s temperate climate opened up solutions that are 

well suited to this location and allow for extremely energy-efficient approaches. Working with 

NASA Headquarters, which commissioned a study to evaluate possible expansion solutions, we 

determined the best path forward was to deploy a prototype module system with a goal of 

reducing both power and water utilization. Using 25% of total power consumption for cooling 

equates to a 1.33 Power Usage Effectiveness (PUE) for the primary NASA Advanced 

Supercomputing (NAS) facility; our goal was to deploy a system with a 1.06 PUE and to all but 

eliminate water utilization. 

We deployed the first prototype module in late 2016, and it has been operational for about a year. 

It houses a 1.2-petaflop system, called Electra, that uses about 400 kilowatts (kW) of power. The 

module exceeded our optimistic goals. Over the third quarter of 2017, the PUE for this system 

was 1.025, beating our target of 1.06; water usage for the entire year was about 55,000 gallons, a 

reduction of more than 97% over the primary facility. 

We successfully used outside air to cool the compute system throughout the year, only running 

water for cooling when needed. The outside air is pulled into the module through large particle 

filters and enters a mixing chamber, where it can be mixed with air from the module’s hot aisle 

to lower the humidity or raise the temperature. It then passes through small particle filters and a 

mesh media that can contain water to cool the air (if needed) before passing into the cold aisle 

and through the computers. 

 

Results and Impact 
 

The success of the first prototype led to the acquisition of a second, highlighting another 

advantage of this approach: expansion on demand. By this time, new technologies became 

available that were not an option with the first prototype. The second module can hold twice the 

number of nodes, and can remove more heat load—allowing us to increase total power from 500 

kW to 1.2 megawatts. The new system uses the same air/water cooling technology as the first, 

but also has direct-to-chip heat transfer to a cold-water loop. Early testing is in line with the first 



module with a PUE value of 1.03, exceeding our goal of 1.08 for the new system. When fully 

populated, the new Electra system—comprising the nodes in both modules—will reach a peak 

performance of over 8 petaflops. 

 

What’s Next 
Next year, we will begin construction on a new modular facility based on the technologies 

proven in the prototypes. This new facility will enable additional expansion to meet NASA’s 

future challenges. 
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NASA�s HEC Requirements: Capacity
HEOMD (engineering-related work) require HEC resources that can handle 
large numbers of relatively-low CPU-count jobs with quick turnaround times.

Over 1500 simulations utilized ~ 2 
million processor hours to study 
launch abort systems on the next 
generation crew transport vehicle

Over 4 million hours were used over a 
4 month project to evaluate future 
designed of the next generation launch 
complex at the Kennedy Space Center

The formation of vortex filaments and their roll-
up into a single, prominent vortex at each tip on 
a Gulfstream aircraft
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NASA�s HEC Requirements: Capability
ARMD and SMD (aeronautics and science related work) require HEC resources that can 
handle high fidelity relatively-large CPU-count jobs with minimal time-to-solution. Capability 
enables work that wasn�t possible on previous architectures.

NASA is looking at the oceans, running 100�s 
of jobs on Pleiades using up to 10,000 
processors. Looking at the role of the oceans 
in the global carbon cycle is enabled by access 
to large processing and storage assets

For the first time, the Figure-of-Merit has been 
predicted within experimental error for the V22 
Osprey and Black Hawk helicopter rotors in 
hover, over a wide range of flow conditions 

To complete the Bolshoi simulation, which traces how the largest 
galaxies and galaxy structures in the universe were formed billions of 
years ago, astrophysicists ran their code for 18 straight days, consuming 
millions of hours of computer time, and generating massive amounts of 
data
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KEPLER

NASA�s HEC Requirements: Time Critical
NASA also has need for HEC resources that can handle time-sensitive 
mission-critical applications on demand (maintain readiness)

ReEntry

Storm Prediction

KEPLER
UAVSAR produces polarimetric (PolSAR) 
and interferometric (repeat-pass InSAR) 
data that highlight different features and 
show changes in the Earth over time

HECC enables the enormous planetary transit searches to be 
completed in less than a day, as opposed to more than a 
month on the Kepler SOC systems, with significantly 
improved accuracy and effectiveness of the software 
pipeline
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HECC Traditional Computer Floors
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HECC Modular Computer Floors

7

•HECC Prototype Facilities
•Modular Supercomputer Facility
•Concrete Pad 362 square meters / 2.4 MW / will hold 2 adjacent DCoD-20 modules
• DCoD-20  Module 1 90 square meters / 40 square meters computer floor / 500 KW  
• Custom Module 2 90 square meters / 86 square meters computer floor / 1,200 KW



HECC Compute Portfolio
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HECC Assets

4 Compute Clusters
• Pleiades 161 Racks / 11,340 nodes / 7.57 PF / 

32,230 SBU/hr
• Electra 20 Racks / 2,304 nodes / 4.78 PF / 

11,566 SBU/hr
• Merope 56 ½ Racks / 1,792 nodes / 252 TF /

1,792 SBU/hr
• Endeavour 3 Racks / 2 nodes / 32 TF / 140 SBU/hr
1 Visualization Cluster 245 million pixel display / 128 node / 703 TF
7 Lustre File Systems 39.6 PB
6 NFS File Systems 1.5 PB
Archive System 490 PB

Experimental Quantum D-Wave 2
• System with 1,097 qubits



HECC Growth

9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11/04 06/05 11/05 06/06 11/06 06/07 11/07 06/08 11/08 06/09 11/09 06/10 11/10 06/11 11/11 06/12 11/12 06/13 11/13 06/14 11/14 06/15 11/15 06/16 11/16 06/17 11/17

HECC Growth

Top500 LINPACK Site
Results

NASA Blazes a Different Path to Energy Efficient Supercomputing



HECC Conducts Work in Four Major Technical Areas

Supercomputing 
Systems

Data Analysis and 
Visualization

Application 
Performance and User 
Productivity

Networking

Provide computational power, mass 
storage, and user-friendly runtime 
environment through continuous 
development of management tools, 
IT security, systems engineering 

Facilitate advances in science and 
engineering for NASA programs by 
enhancing user productivity and 
code performance of high-end 
computing applications of interest

Create functional data analysis and 
visualization software to enhance 
engineering decision support and 
scientific discovery by incorporating 
advanced visualization technologies

Provide end-to-end high-
performance networking analysis 
and support to meet massive 
modeling and simulation 
distribution and access 
requirements of geographically 
dispersed users

Supporting Tasks
Facility, Plant Engineering, and Operations: Necessary engineering and facility support to ensure the safety of HECC assets and staff
Information Technology Security: Provide management, operation, monitoring, and safeguards to protect information and IT assets
User Services: Account management and reporting, system monitoring and operations, first-tier 24x7 support
Internal Operations: NASA Division activities hat support and enhance the HECC Project areas
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Quarterly Utilization Over 10+ Years
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Aeronautics Support (55,958,567 SBUs)

Advanced Air Vehicles
# of projects:  74

# of SBUs used*:  21,212,681

✦HECC is used to develop concepts and technologies for dramatic improvements in the 

noise, emissions, and performance of transport aircraft.

✦HECC is used to develop concepts and technologies to increase rotorcraft speed, range and 

payload, and decrease noise, vibration and emissions.

✦HECC is used to develop advanced computer-based prediction methods for supersonic 

aircraft shape and performance and to develop technologies that will help eliminate today's 

technical barriers (such as sonic booms) to practical, commercial supersonic flight.

✦ HECC is used to develop computer-based tools and models and scientific knowledge 

that will lead to significant advances in our ability to understand and predict flight 

performance for a wide variety of air vehicles. 

Transformative Aeronautics Concepts
# of projects:  48

# of SBUs used*:  40,017,897

✦HECC is used to develop and utilize Reynolds-averaged Navier-Stokes (RANS) and Large 

Eddy Simulation (LES) methods, and hybrid RANS-LES techniques to improve calculation 

methods for propulsion flows dominated by turbulent boundary layers and mixing.

✦HECC is used to assess natural laminar flow concepts, to elucidate the physics and 

control of boundary layer transition in swept wing flows and drag reduction concepts for 

compressible boundary layers.

✦HECC is used to validate chemistry, chemistry-turbulence and spray models being 

developed under the National Jet Fuels Combustion program.

Airspace Operations and Safety
# of projects:  3

# of SBUs used*:  2,173,135 

✦HECC is used for developing reliable computational tools for predicting and analyzing 

stability & control characteristics of aircraft prior to or while encountering loss-of-control 

flight conditions characterized by abnormal flight (e.g., stall), abnormal vehicle conditions 

(e.g., damage, jammed control surfaces), external upsets (e.g., wake vortex, wind shear, 

gusts), and icing.✦ HECC is used to develop methods for computing aerodynamic performance degradation 

associated with ice accretions on swept wing geometries.✦HECC is used to produce real-time icing impact fields for flight planning and post mission 

analysis.

Integrated Aviation Systems
# of projects:  9

# of SBUs used*:  14,004,676

✦HECC is used for accurate prediction of airframe noise from a full scale aircraft and 

evaluation of flap and landing gear noise reduction concepts in flight environments.

✦HECC is used to develop technology for compact, high-power-density electric motors to 

power an all-electric general-aviation aircraft or helicopter, a hybrid turbine-electric 

regional airliner or a large transport with many small engines distributed around the 

aircraft.

✦HECC used for parametric studies conducted to optimize size, shape and placement of an 

array of fluidic actuators for maximizing the lift for control surfaces on an aircraft, which 

would help reduce the size of control surface and the weight of an aircraft.

*October 1, 2016 to September 30, 2017

Aviation Safety Program
The Aviation Safety Program (AvSP), part of 
NASA’s Aeronautics Research Mission Directorate, 
helps to develop new ways to achieve exceptional 
levels of safety for air travel despite increasingly 
crowded skies and congested airports. 

Over the past decade, collaboration between in-
dustry and government to proactively identify new 
risks has led to historically low rates of commercial 
accidents. But as air traffic volume increases, the 
vigilance of the aviation community must continue. 
That’s why, working with partners from academia 
and in the public and private sectors, AvSP con-
ducts foundational research and develops new 
technologies to overcome the emerging challeng-
es created by the nation’s transition to the Next 
Generation Air Transportation System (NextGen).   

To help provide solutions, the program inves-
tigates improvements to increase the inherent 
safety of aircraft systems and structures, ways to 
avoid atmospheric hazards, and development of 
next-generation concepts for on-board and on-
ground safety systems. AvSP studies:

systems;

eliminate any potential issues;

systems to improve overall performance;

issues from ever occurring; and

related systems. 

Images (Clockwise, from top-left) Data Mining: -
ing safety issues are already proving useful to commercial airlines. Flight Safety: Subscale models are put through loss-of-control 
scenarios in NASA wind tunnels to test new recovery techniques. Engine Icing Prevention: Studies are being done into the types of 
atmospheric conditions that can form ice particles inside engines, leading to power loss. Human-Friendly Flight Decks: NASA uses 
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Surface pressure coefficient with sonic iso-surfaces, 
from an 11,640-processor computation of the 
transonic flow about a Space Launch System 
configuration. The time-accurate computation is being 
performed to predict unsteady surface pressures and 
ultimately the development of buffet loads.  

✦HECC is used to simulate the effect of larger solid rocket boosters and new propulsion 
systems on the launch facility at Kennedy Space Center, such as investigating whether ignition 
overpressure waves generated during liftoff are fully suppressed by the existing water 
suppression system.
✦HECC is used to evaluate visiting-vehicle induced loads on the International Space 
Station (ISS) during mated and rendezvous operations and to evaluate crew Extra-
vehicular Activity/Intra-vehicular Activity and attitude control loads on ISS.
✦HECC is used in developing a combustion response model to investigate combustion 
instability in hydrocarbon-fueled rocket engines.
✦HECC is used for technology development for entry, descent and landing systems.

Human Exploration and Operations & Safety Support 
(51,658,239 SBUs)

*October 1, 2016 to September 30, 2017

Multi-Purpose Crew Vehicle
# of projects:  8
# of SBUs used*:  3,563,459

✦HECC is used to support the creation of hundreds of computational solutions that model 
the flow field around the Crew Module and Launch Abort System for all flight regimes to be 
used as input for the aerodynamic databases.
✦HECC is used to run computational fluid dynamics simulations to study the aerodynamic 
and aerothermal environments for the Multi-Purpose Crew Vehicle.✦HECC is used to develop and deploy a prototype system for rapid aerodynamic 
performance database generation and to use it on real-world problems faced by the Human 
Exploration and Operations mission directorate.

Space Launch Systems
# of projects:  14

# of SBUs used*:  45,945,964

✦ HECC is used for computational fluid dynamics simulations of Space Launch Systems ascent 
to assess aerodynamic performance, protuberances, stage separation, and plume effects 
(such as plume-induced flow separation) for evolving vehicle designs.
✦ HECC is used for computational fluid dynamics analysis of Advanced Booster 
development efforts in the combustion stability areas.
✦HECC is used for prediction of the launch induced environment for the Space Launch 
System including liftoff acoustics, ignition over-pressure, separation environments, 
debris, Launch Pad Abort Environments and hydrogen entrapment.
✦HECC is used to simulate tanks and main propulsion system components (including 
feedlines, valves, manifolds, ducts, and pogo accumulators) for evaluation of criteria such 
as flow uniformity and component pressure drop.

HEOMD - Space Flight Operation & General
# of projects:  37
# of SBUs used*:  11,895,099 

NASA Engineering & Safety Center
# of projects:   7
# of SBUs used*:  7,425,622

✦HECC is used for simulations to provide guidance to the Space Launch System advanced 
booster designers by providing aerodynamic loading implications for various potential 
advanced booster geometric configurations.
✦HECC is used to improve the capability to predict combustion stability in liquid rocket 
engines to increase NASA engineers’ capability to more confidently and efficiently identify and 
mitigate combustion stability issues in engine development programs.
✦HECC is used to used for studies of large eddy simulations of oblique-shock / supersonic 
hot jet interaction, aimed at prediction of plume-induced vibroacoustics.

NASA Blazes a Different Path to Energy Efficient Supercomputing 15



Astrophysics
# of projects:  105

# of SBUs used*:  48,143,291 

✦ HECC is used by the Kepler mission to find Earth-sized planets around other stars and to 

fully analyze the Kepler data to find any undiscovered planets still “hiding” in the data.

✦HECC is used to understand the physics of high redshift galaxy formation and make 

detailed predictions that can be used to guide NASA observations of the first galaxies.

✦HECC is used for quantifying the redistribution of matter in galaxies when supernova 

energy is deposited; exploring the growth of black holes and the impact of active galactic 

nuclei on galaxy evolution; and determining whether the ultraviolet light from stars in 

galaxies can "escape" to re-ionize the universe.

Earth Science
# of projects:  126

# of SBUs used*:  23,309,412 

✦HECC is used to combine observational data with numerical simulations of the global ocean 

circulation to provide vital information for understanding climate change and its impact on 

land and sea ice, ocean ecology, and the global carbon cycle.

✦ HECC is used for high-resolution cloud resolving model simulations to provide unique and 

detailed insights into the processes that form tropical clouds and cloud systems, which 

account for approximately two-thirds of global rainfall.

✦ HECC is used explore the feedback mechanisms between polar ice sheets and atmosphere 

circulation in order to determine how global temperature changes translate into increased sea 

level rise.

✦HECC is used to improve the understanding of the current balance of carbon in the 

Arctic and to provide a framework for early detection of future carbon destabilization.

Science Support (94,488,707 SBUs)

Heliophysics
# of projects:    92

# of SBUs used*:  24,538,939 

✦ HECC is used for modeling solar magneto-convection in order to understand how 

magnetic fields emerge through the sun’s surface, heat the sun’s outer atmosphere, and 

produce sunspots, spicules, and flares. 

✦HECC is used for realistic multi-scale simulations to understand the complicated physics of 

the turbulent convection zone and atmosphere of the sun and for analyzing and interpreting 

observations from the NASA space missions.

✦HECC is used to simulate small-scale magnetic fields generated by turbulent dynamo action 

just beneath the solar surface in order to accurately predict space weather events that impact 

the Earth environment.

Planetary Science
# of projects:  87

# of SBUs used*:  24,115,485 

✦HECC is used to decipher the structure of the lunar interior to understand the origin and 

thermal evolution of the moon and to extend this knowledge to other bodies in the inner 

solar system.

✦HECC is used to model the origin and evolution of Kuiper belt objects to determine how 

their properties constrain our current models of planet formation.

✦HECC is used perform modeling and simulation of asteroid entry, breakup, airburst, blast 

propagation, and tsunamis to assess the risks that potentially hazardous asteroids could pose 

to populations and infrastructure in the event of an Earth strike.

*October 1, 2016 to September 30, 2017
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Return on Investment
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NAS Facility Expansion
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Why are We Doing This
• The calculation used to be very simple…

• When the cost of maintaining a group of nodes for three years exceeded the cost to 
replace those nodes with fewer nodes that did the same work, we replaced them.

• Now, not so much…

• We look at the total computing our users get and procure new nodes within our budget 
and remove enough nodes to power and cool the new nodes.

• This means that we are not able to actually realize all of the expansion we are paying for.

NASA Blazes a Different Path to Energy Efficient Supercomputing 19



But That’s Not All
• Our computer floor is limited by power and cooling
• Our Current Cooling System

• Open Air Cooling Tower with 4 50HP pumps
• 4 450 Ton Chillers
• 7 pumps for outbound chilled water
• 4 pumps for inbound warm water

• Our Electrical System
• Nominally the facility is limited to 6MW
• 20% - 30% is used for cooling
• 4MW – 5MW for computing

NASA Blazes a Different Path to Energy Efficient Supercomputing 20



N258 Cooling Flow Chart
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What Could We Have Done?
• Do nothing

• Augment the existing facility

• Upgrade a different facility on the center

• Build a new traditional center using latest technologies

• Build a modular center using latest technologies

• Expand at a remote NASA computer center

• Expand at a remote Government computer center

• Expand at a private sector computer center

NASA Blazes a Different Path to Energy Efficient Supercomputing 22



What We Did
• Based on a NASA HQ study conducted by IDC in 2015 we

• Engineered and deployed a 2 phase prototype modular facility

• Completed initial design of NAS Facility Expansion
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PHASE 1 OF THE PROTOTYPE 
EXCEEDED EXPECTATIONS
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Site Layout
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DCU-20
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Concrete Pour
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Module 1 Assembly
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Annual Energy Impact
16 Computer Racks 

(1152 Nodes)
Existing Facility DCoD-20 Facility % Savings

Water Utilization Per Year 5,527,000 L* 208 L** 96%

Electricity per year 3,728,256 kwh° 2,873,280 kwh°° 22.9%(overall)
92.4%(cooling)

* Assumes 16 racks represent 8% of facility load
** Year 1 usage
� 1.33 PUE (3rd quarter actuals)
�� 1.025 PUE (3rd quarter actuals)
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PHASE 2 OF THE PROTOTYPE IS 
DEPLOYED
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Technologies Advanced in a Year
• Rack density improved, doubling 

from D-Racks to E-Cells
• Chip performance and memory 

improved
• Facility advances allow us to deploy 

over a megawatt of computing in a 
single module effectively doubling 
the number of nodes we can deploy 
in a given footprint

• The second prototype can host 
eight HPE E-Cells with 2,304 nodes

Initial Module

Available for Expansion

New Module
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Module 2 Assembly
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NAS FACILITY EXPANSION FY18 ->
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We’re Approved to Deploy a Facility Expansion
• Our goal is to provide the infrastructure for a site that could deploy a fully-connected 

system with 1,000,000 cores.
• It needs to be flexible to handle advances in technology
• It needs to be expandable
• It needs to be energy efficient
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Full Site Deployment Concept
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• 8 Compute modules house 96 
tightly coupled E-Cells 
providing 84.9 PF

• 5 Data modules house 420 PB 
of formatted storage 
protected by dual generators 
and battery UPS

• System joins existing HECC 
assets with shared file 
systems and data archive

• Project deployed on site 
currently being constructed 
and available in early FY19

• Project fully operational in 
FY19



Site Location

MSF

N258

NFE Site 
Location
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Prepared Site
• 250 ft x 180 ft

• 3 ½ ft of Vertical, Engineered Fill  (1½ ft
Above DeFrance Road)

• Site Surrounded by De France Rd or Fire 
Access Road

• Ramp to Top of Elevated Site from DeFrance
Road

• 25 kV Switchgear yard at Southwest Corner 
of Site

• Water Main Point of Connection at Southwest 
Corner of Site
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Prepared Site Utilities

Electrical at Site
• 25 kV Switchgear Yard (40’ x 12’)

- Four 25 kV Vacuum Circuit Breakers will Distribute up to 15 
MVA at 24.9 kV to Step-Down Transformers used in Improved 
Site

- Power Meters installed on each Vacuum Circuit Breaker
- Site Low Voltage Power
• 1 Additional 25 kV VCB for Site Power
• 150 kVA Transformer, 24.9kV/208V, 3 Phase, 4 wire
• 400 A Panelboard

Water at Site
• 4-inch Water Main capable of 200 GPM at 40 psi at 

Point of Connection
- RPZ Backflow Preventer & Water Meter Installed in 4-inch 

Water Line

• Sewer & Storm Drain Piping Installed to edge of 
Prepared Site

Communications at Site
• Data to N258 will be Provided by Conduits & 

Manholes
• Communication Conduits will Terminate at Comm

Manhole in Center of Prepared Site
• Fiber Optic Procurement & Installation by NASA 

personnel
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Questions

http://www.nas.nasa.gov/hecc
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