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Introduction

• This talk is motivated by recent experience with HEEET 
development and qualification and assessment of its 
technology readiness

• Unique challenges in qualifying heatshields in extreme 
environments independent of material choice
- Extreme environments defined as >1500 W/cm2 and >1.5 atm 

for this talk
- Missions to Venus, Saturn, Ice Giants and Earth reentry
- Focusing on a subset of challenges for this talk

• Thoughts on how we can tackle these challenges

• This talk focuses only on aerothermal loads and qualification
- Not ground, launch and space environments
- Not entry structural loads
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Aerothermal Qualification of Heatshields

• To qualify a TPS material, we need to demonstrate:
- The system, including local features such as seams, 

does not fail at flight-relevant environments
- Its thermal response must be predictable such that 

margins exceed uncertainties
 Computational modelling reduces uncertainties and 

associated margins

• Requires testing flight-like configurations at scale 
in flight-relevant environments
- Flight-relevant environments are achieved by bounding 

flight parameters (heat flux, pressure, shear, in-depth 
temperatures) in arcjet tests

- Test articles large enough to include system features are 
tested at these bounding conditions

• Measurement quality and analysis fidelity should 
be sufficient for design tool validation
- Uncertainties in test data and analysis impact design 

margins
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Flight-Relevant Environments
• Predicted environments for representative entry trajectories cover a wide 

range of heating conditions
- Significantly higher environments than recent experience (MSL, Orion)
- Unmargined stagnation point traces shown here may not be bounding when 

considering turbulent shoulder environments and margins
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• TPS qualification can only 
be done by piecewise 
testing across different 
facilities
- Only 1-2 parameters are 

bounded in each test
- IHF 3” and 6” for high heat 

flux/pressure stagnation tests
- AEDC stagnation for extreme 

pressure 
- AEDC wedge for shear testing
- LHMEL for high heat flux 

testing (no flow)

• Conditions for steep and 
high latitude trajectories are 
beyond existing facilities  

OrionMSL



Bounding Heating Parameters

• The need to bound heating parameters 
drove New Frontiers 4 proposals to 
shallower trajectories

• Heat flux and pressure are bounded by IHF 
3” nozzle test condition

• Shear levels are bounded by AEDC wedge 
but at lower heat flux
- Reasonable to assume that the material state is 

representative at lower flux
- Residual risk that surface temperature matters for 

shear-driven failure mode
- Deemed acceptable by NF proposers

• Future mission designs may be forced to 
pursue more extreme entries
- Interplanetary trajectory (entry velocity, FPA, 

latitude)
- Mass or manufacturing constraints (weaving thick.)

• Bounding all heating parameters in ground 
tests is not realistic for these mission 
applications
- Mission risk posture dictates what is acceptable for 

TPS qualification
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How to Address This Challenge

• Understanding and predicting failure mechanisms is essential in the 
absence of facilities that can simulate all relevant flight conditions
- “Relevant environments” don’t necessarily need to be bounding if 

failure mechanisms and driving parameters are understood
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• Requires a combination of modelling and failure 
testing
- Categorizing failure mechanisms and identifying the 

underlying physics (material-specific)
- Testing to induce failure and validate models
- Using validated models to identify driving parameters and 

performance cliffs

• Failure mode modelling is not a simple 
undertaking
- Material response that is generally ignored in design (flow 

inside the material, non-equilibrium surface reactions, 
mechanical erosion)

- Coupling thermostructural analysis with flow modelling
- Better characterization of material composition/structure 

and properties

• Recent progress in high-fidelity TPS modelling 
makes failure mode modelling more tractable



Foundational Blocks of Failure Modelling
NASA’s Entry Systems Modeling Project
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Microscale experiments and analysis 
for fundamental properties, validation

Multiscale approach to quantifying stochastic behaviors

Gap filler

Benchmark simulations of system-
scale performance with uncertainty 
quantification

Micro                                          Meso                                        Macro

Detailed simulations of features 
and flaws provide information to 
inform macroscale models.

Coupled thermostructural 
analysis of fiber erosion in 
hypersonic boundary layer
Credit: Schwartzentruber

Simulated MMOD hole growth
Credit: Ferguson

TGA of decomposition 
products
Credit: Minton

Micro-computed 
tomography + 
permeability simulation
Credit: Borner

Simulated generation of 
textiles + properties
Credit: Ferguson

Differential recession of 
tiled heatshield
Credit: Meurisse






From Foundational Research to Design Tools

• Competed missions don’t have the resources to 
advance modelling from foundational stages

• A concerted effort is needed to bridge the gap 
and mature current research toward design tools
- Integrate foundational blocks for application to a 

specific problem
- Start with problems with reduced complexity 
- Focus on one material type

• 3D-woven materials (ex. HEEET) are good 
candidates
- Simple constituents (carbon and phenolic)
- Well-defined woven structure that can be modeled 

computationally
- Weaves can be altered to develop materials more 

susceptible to failures

• Use available data from past arcjet tests and 
design tests to generate data for model validation
- Testing different weaves (tow size, weaving density) to 

identify key parameters
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Candidate Problem for Failure Modelling
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• AEDC stagnation test is an excellent problem for failure modelling 
• Recession measurements 4-5 times higher than predictions for both HEEET and 

carbon phenolic
- Potentially due to non-flight-like boundary conditions (extreme pressure gradients near the shoulder 

causing flow through)

• Explaining augmented recession can remove the current pressure limit on HEEET 
and inform a better model design for future tests

Non-flight-like Boundary Conditions in 
AEDC Stagnation Test 

HEEET Acreage at ~ 14 atm & 1000 W/cm2

Played at Half-speed






Conclusions

• Certain design choices make it easier to bound flight environments in 
ground facilities
- Flying shallower trajectories
- Eliminating seams in woven systems by developing a larger loom

• Yet, not all relevant heating parameters can be bounded in ground 
facilities

• Understanding and modeling failure modes using higher-fidelity tools 
will be critical in reducing residual risk
- May allow for extrapolation beyond ground testing
- Design better tests and explain unexpected response due to non-flight-like test 

configuration

• A concerted effort initially tackling problems with reduced complexity 
is needed to mature foundational research to tools that can be readily 
used by competed missions
- Candidate problems with existing test data are available
- Testing aimed at inducing failure modes is needed
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