

Using Machine-Learning to Dynamically Generate Operationally Acceptable Strategic Reroute Options

Antony Evans (formerly Crown Consulting, Inc)*
Paul Lee (NASA Ames)

* Now working for Airbus

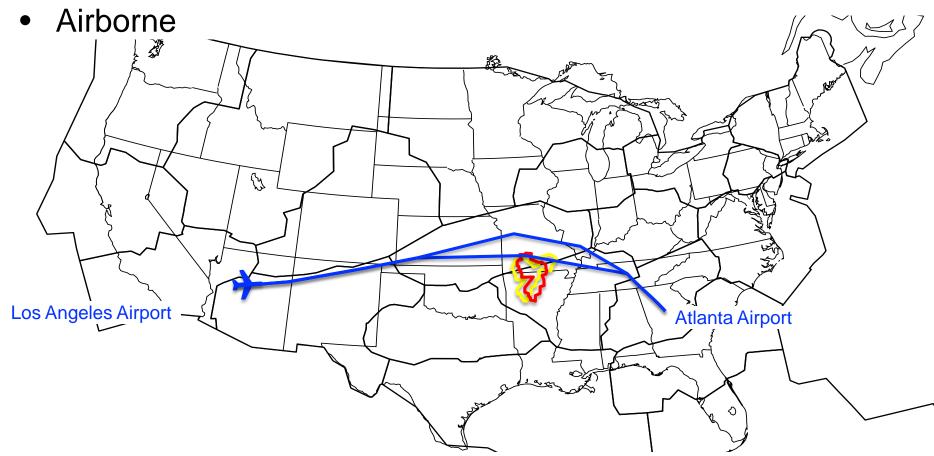
Strategic Rerouting

- Hours before departure
- Pre-departure



Strategic Rerouting

- Hours before departure
- Pre-departure



Trajectory Negotiation

Advantages

- Enables flight operators to tailor trajectories based on preferences
- Enables better utilization of available airspace resources
 - Reducing delay & increasing throughput
- Increases predictability

Barriers

Routes must be operationally acceptable

Can we automatically generate a TOS with high probability of operational acceptance?

Literature Review

Hall, W., Hunter, G., "Trajectory Optimization and the Clearable Route Network," 2018.

 Commercial TOS generators under development, accounting for historical usage

Idris H., et al., "Assessment of Air Traffic Controller Acceptability of Aircrew Route Change Requests," 2017.

Studies completed on operational acceptability

Taylor, C., Wanke, C., "Dynamically Generating Operationally Acceptable Route Alternatives Using Simulated Annealing," 2012.

 Models generating strategic routes using optimization, constrained to meet criteria that make it operationally acceptable

Evans, A.D., Lee, P., "Predicting the Operational Acceptance of Route Advisories," 2017.

 Previous NASA work uses machine learning to predict operational acceptability of airborne reroute requests

Objective

Automatically generate routes that have high probability of operational acceptance

Method: Use machine learning to train predictors on operational acceptance of strategic routes

Approach to TOS Generation

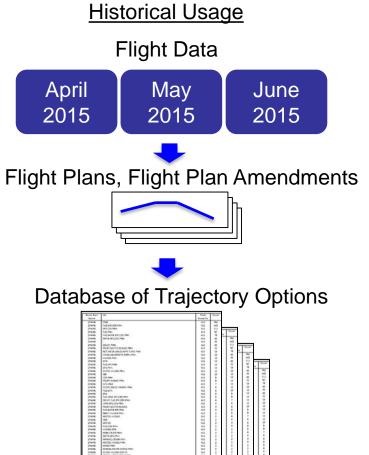
- Identify available trajectory options
 Based on historical routes

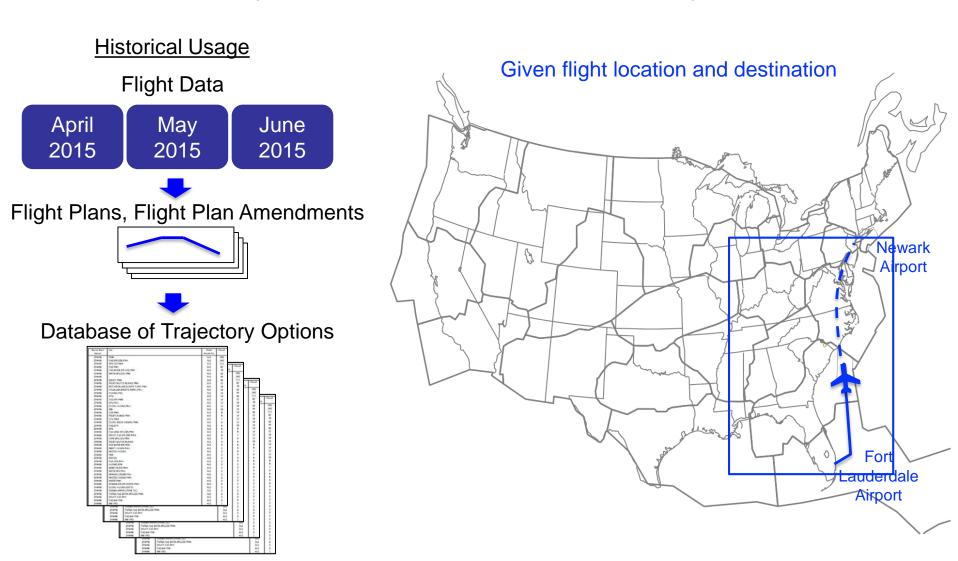
2. Down-select trajectory options

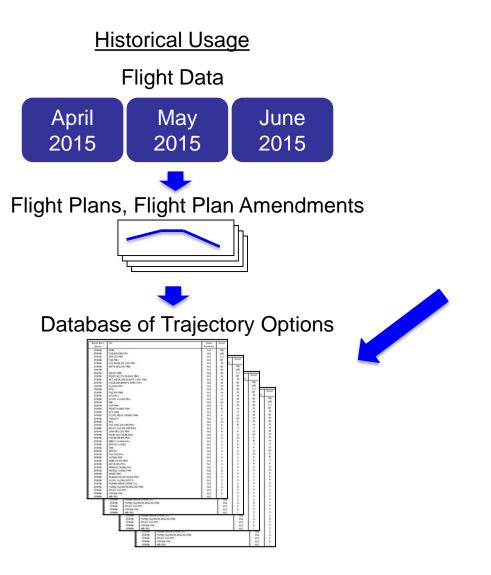
3. Predict operational acceptability

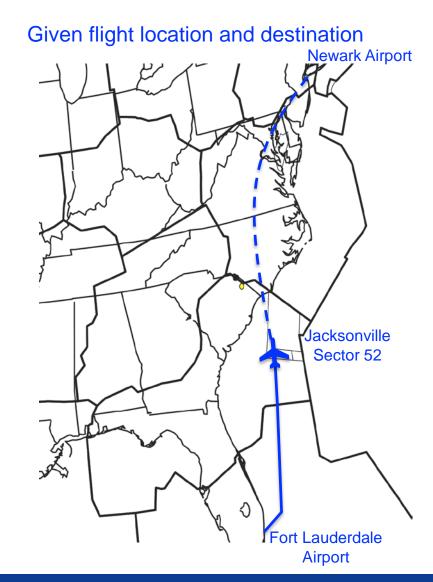
4. Select TOS

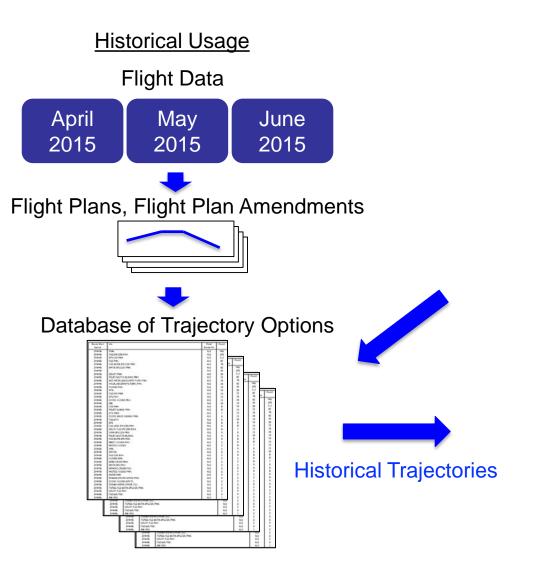
- Using route clustering
- Defines set of geographically distinct routes
- Using machine learning algorithms
- Given static and dynamic conditions
- Based on location of constraint and probability of trajectory acceptance by ATC

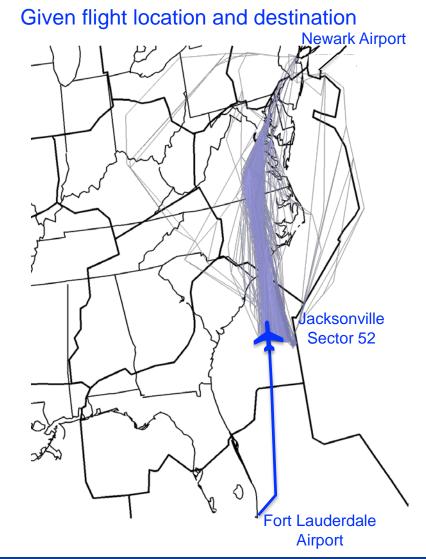




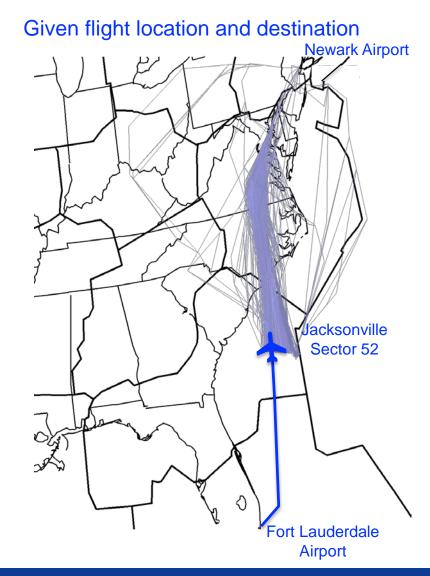




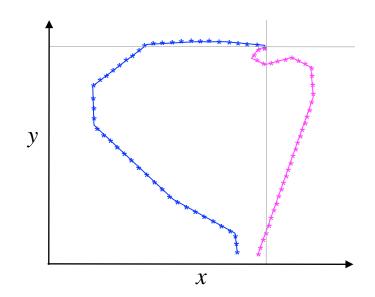




- Apply Hierarchical clustering
- Dissimilarity metric calculated as Euclidean distance between trajectories
 - Each trajectory represented by a fixed length vector
 - Linear interpolation of 2D spatial position for 200 evenly spaced points



- Apply Hierarchical clustering
- Dissimilarity metric calculated as Euclidean distance between trajectories
 - Each trajectory represented by a fixed length vector
 - Linear interpolation of 2D spatial position for 200 evenly spaced points



$$tr_i = (x_{i1}, y_{i1}, x_{i2}, y_{i2}, \dots, x_{iN}, y_{iN})$$

$$tr_j = (x_{j1}, y_{j1}, x_{j2}, y_{j2}, \dots, x_{jN}, y_{jN})$$

. . .

$$d_{ij} = \sqrt{\frac{(x_{i1} - x_{j1})^2 + (y_{i1} - y_{j1})^2 + \cdots}{+(x_{iN} - x_{jN})^2 + (y_{iN} - y_{jN})^2}}$$

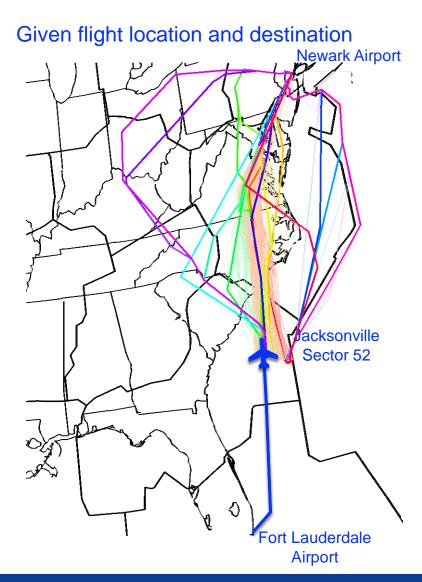
. . .

- Apply Hierarchical clustering
- Dissimilarity metric calculated as Euclidean distance between trajectories
- Number of clusters identified based on maximizing avg. Silhouette score

$$S = \frac{min(intercluster\ dist.) - intracluster\ dist.}{max(min(intercluster\ dist.), intracluster\ dist.)}$$
$$\bar{S} = \frac{1}{N_r} \sum_{i=1}^{N_r} S_i$$

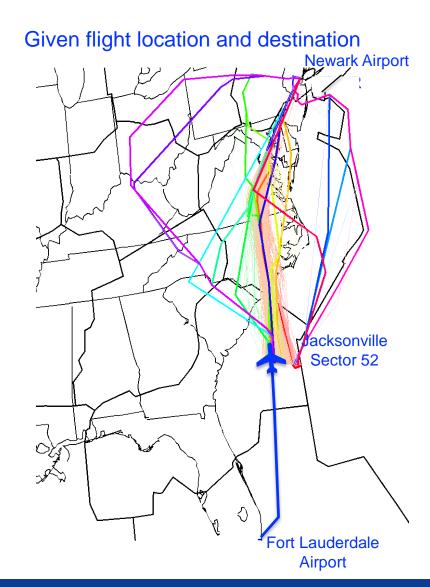
Minimum number of clusters set to 15

- Apply Hierarchical clustering
- Dissimilarity metric calculated as Euclidean distance between trajectories
- Number of clusters identified based on maximizing avg. Silhouette score
 - For flight from Jacksonville Sector 52 to Newark Airport: 16 clusters
- Most commonly flown trajectory in each cluster identified for further analysis



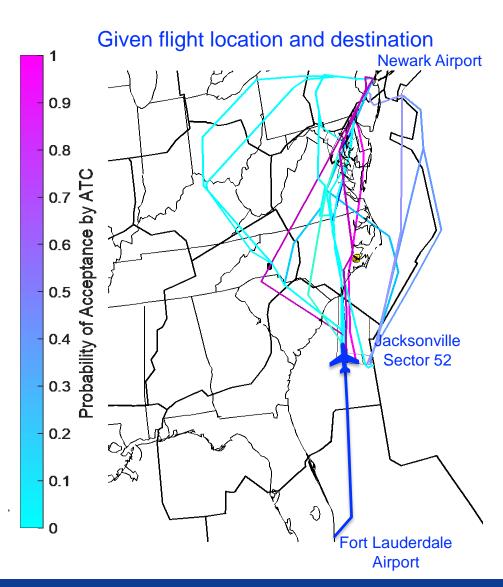
3. Predict Operational Acceptability

- Train machine learning algorithms on historical flight plan amendment data
 - Based on static and dynamic conditions impacting flight
- Select algorithm based on predictive performance using cross validation
- Apply chosen algorithm to predict operational acceptance for down-selected trajectory options



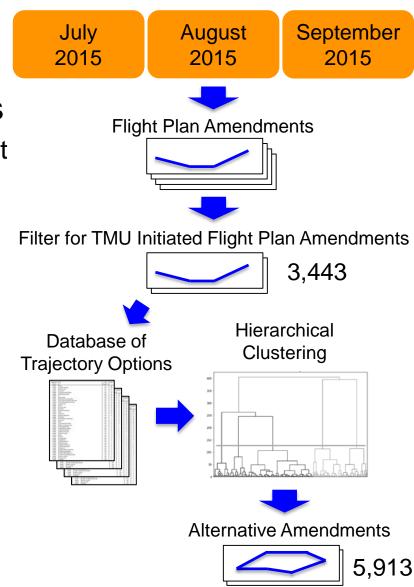
3. Predict Operational Acceptability

- Train machine learning algorithms on historical flight plan amendment data
 - Based on static and dynamic conditions impacting flight
- Select algorithm based on predictive performance using cross validation
- Apply chosen algorithm to predict operational acceptance for down-selected trajectory options

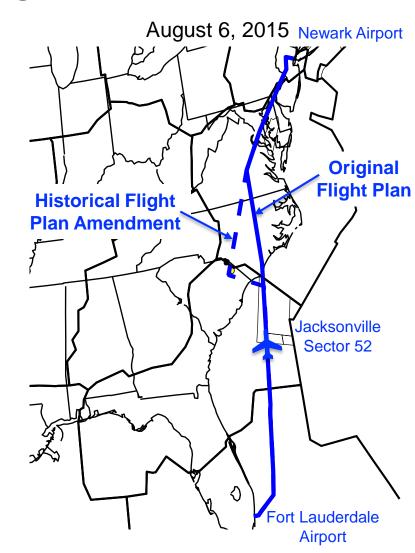


Training Data

- <u>Positive class</u>: Strategic historical flight plan amendments
 - Initiated by Traffic Management Unit (TMU)
 - Filter for amendments:
 - Through multiple Center facilities
 - Excluding direct routings
- <u>Negative class</u>: Generated artificially
 - Potential alternative amendments identified and assumed unacceptable
 - Identified using historical data and clustering

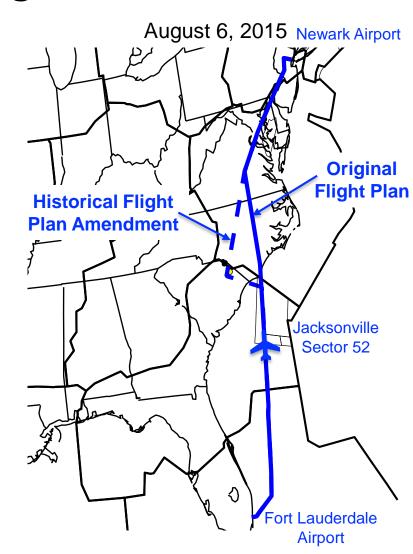


- Static features
 - Historical usage
 - Relative flight duration
- Dynamic features
 - Imbalance between demand and capacity



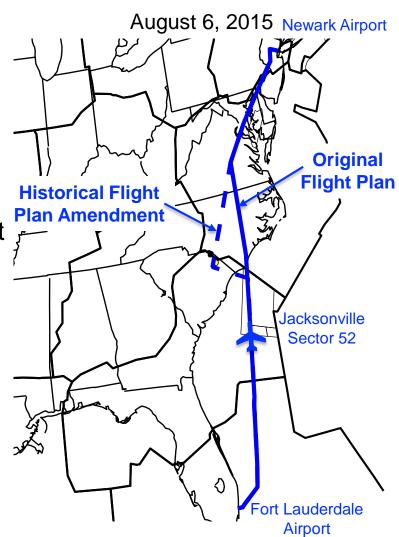
1. Historical Usage

- Count of historical usage
- Count as reroute
- Full trajectory
- Minimum across waypoint pairs
- Difference in counts between original route and amendment



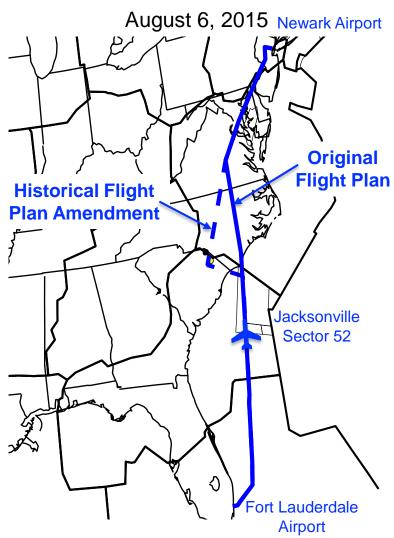
2. Flight Duration

- Flight duration from amendment to destination
- Difference in amendment duration relative to original flight plan
- Number of sectors between amendment and destination
- Difference in number of sectors between amendment and destination relative to original flight plan



3. Demand to Capacity Imbalance

- Projected demand calculated using NASA Future ATM Concepts Evaluation Tool (FACET)
- Capacity defined by sector Monitor Alert Historical Flight Capacity and weather impact



3. Demand to Capacity Imbalance

 Projected demand calculated using NASA Future ATM Concepts Evaluation Tool (FACET)

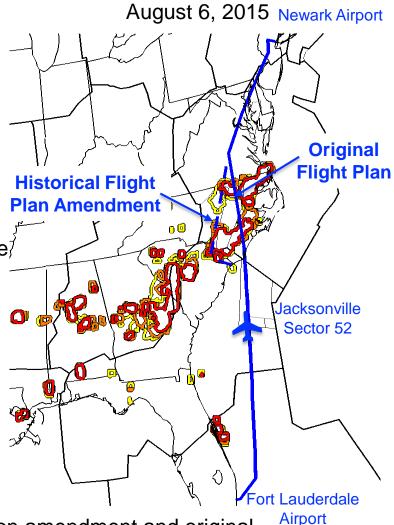
 Capacity defined by sector Monitor Alert Capacity and weather impact

 Forecast weather impact based on percentages overlap between sector and Convective Weather Avoidance Model (CWAM) polygons

 60%, 70% and 80% probability of deviation CWAM polygons used

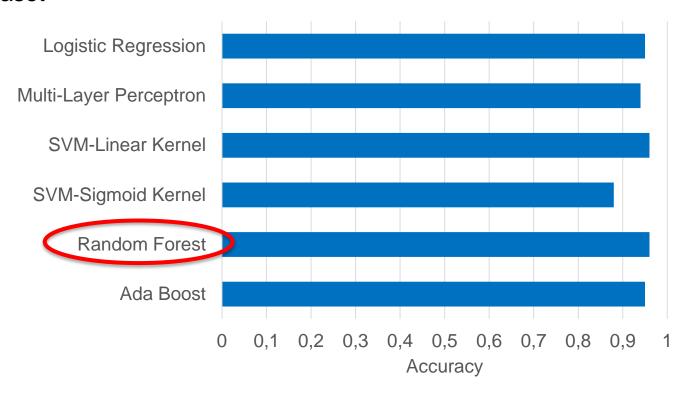
Multiple metrics calculated:

- Average demand/capacity
- Maximum demand/capacity
- Number of sectors over capacity
- Whether any sector was over capacity
- Difference between sum of demand/capacity on amendment and original

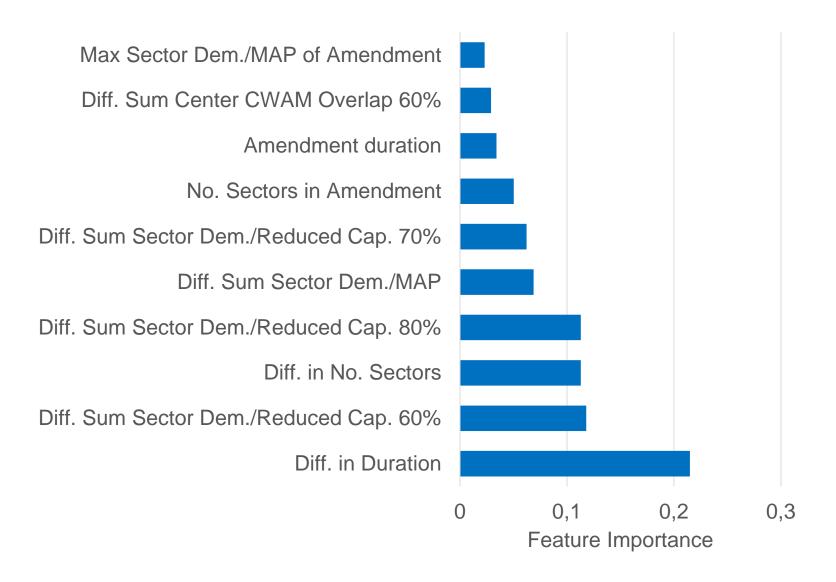


Model Selection

- Model performance estimated using 10-fold cross validation
- 9,356 observations: 36.8% positive, 63.2% negative
- Synthetic Minority Over-Sampling Technique (SMOTE) applied to balance dataset

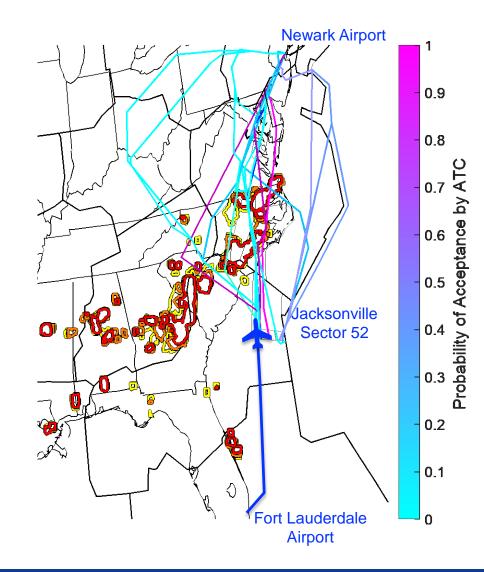


Feature Importance



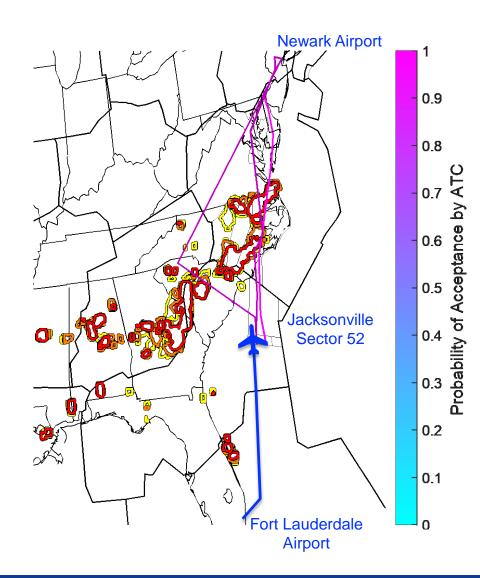
4. Select TOS

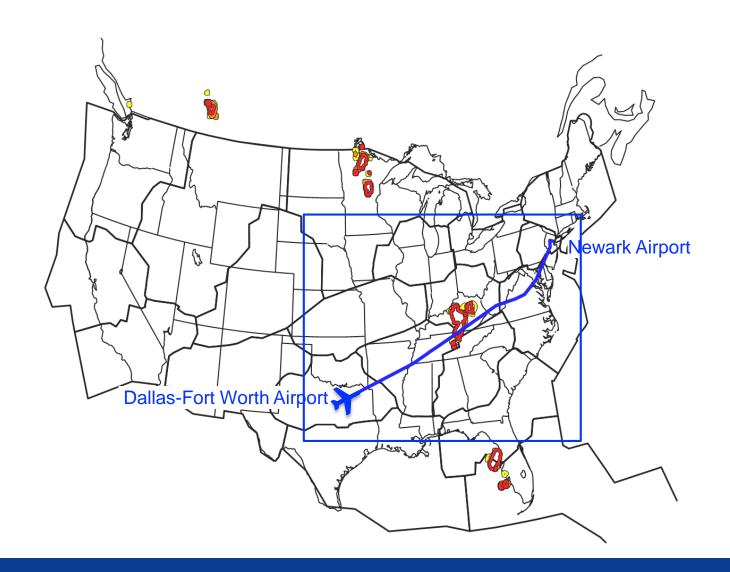
- TOS selected based on:
 - Probability of operational acceptance
 - Location of constraint

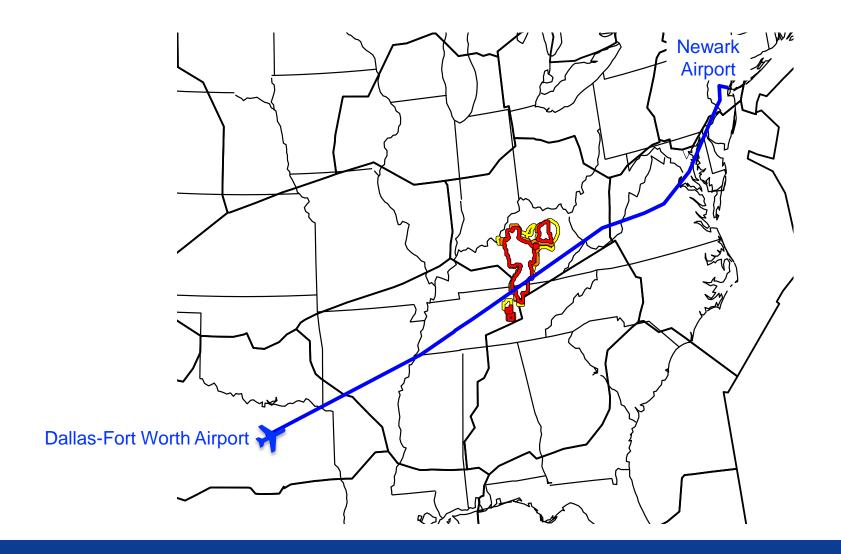


4. Select TOS

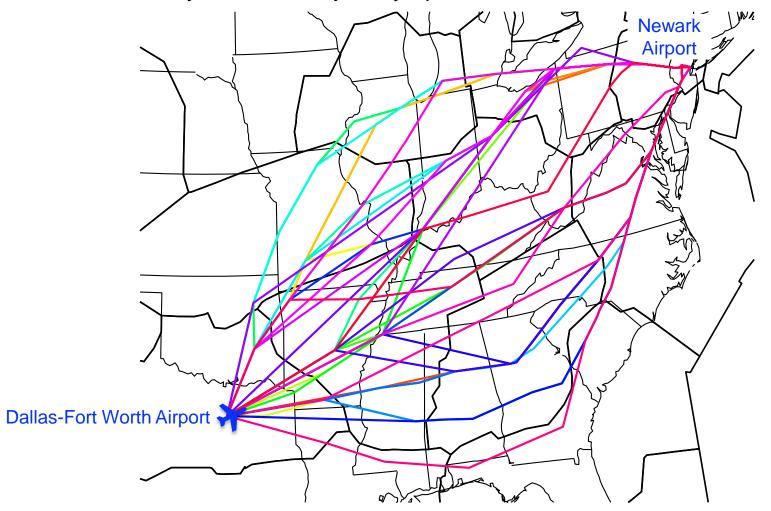
- TOS selected based on:
 - Probability of operational acceptance
 - Location of constraint
- Other factors may also be important
 - Wind optimality
 - Fueling
 - Equipage



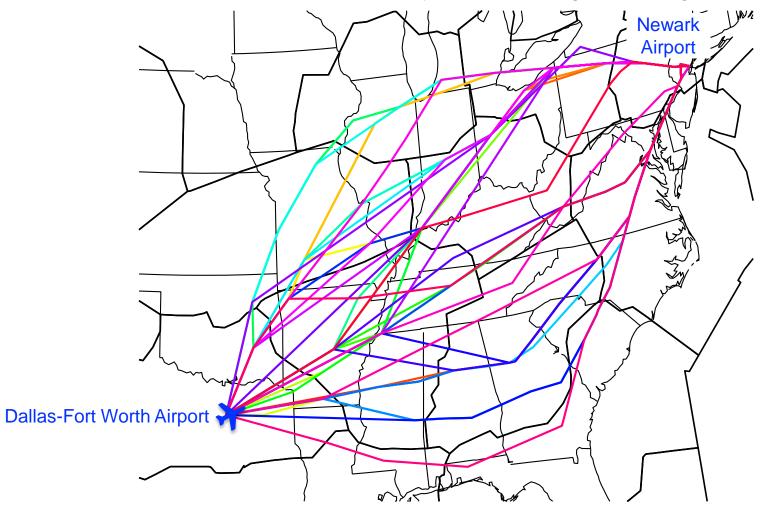




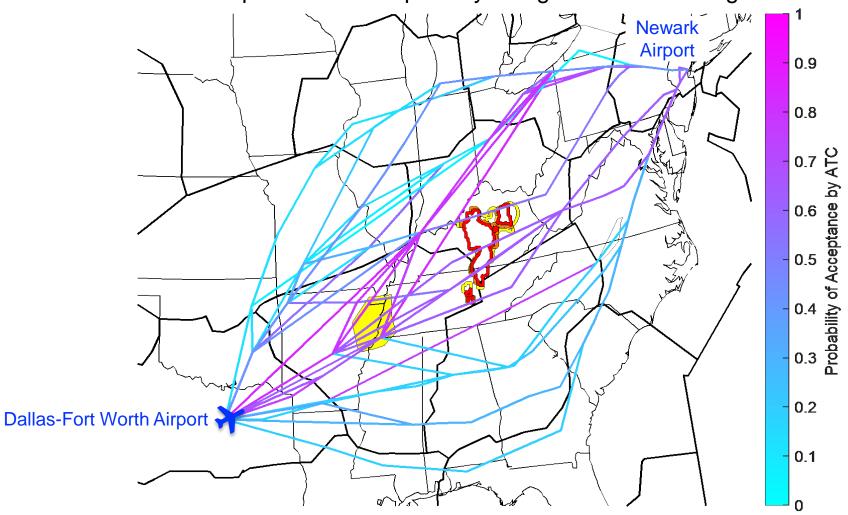
1. Identify available trajectory options based on historical routes



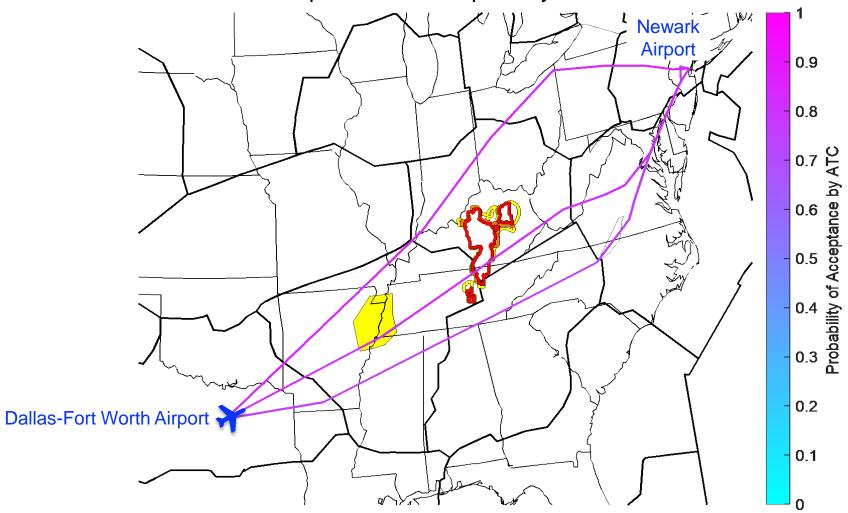
2. Down-select trajectory options using clustering



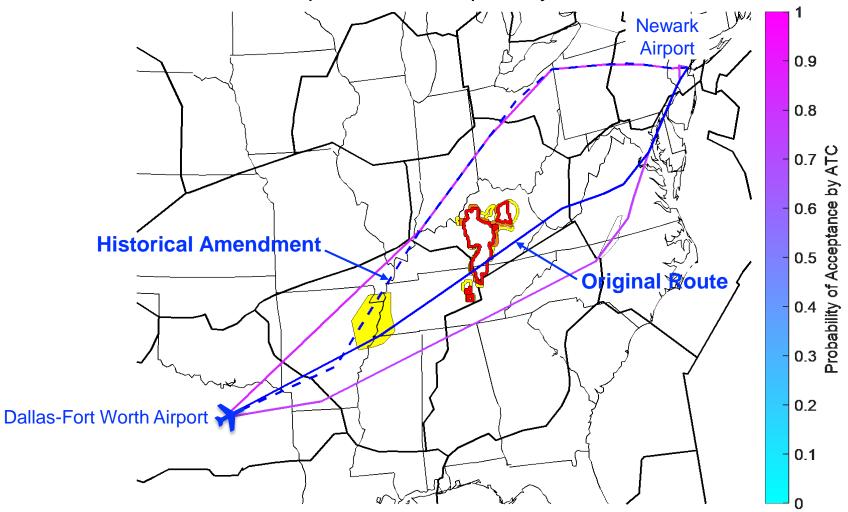
3. Predict operational acceptability using machine learning



4. Select TOS based on operational acceptability and location of constraint



4. Select TOS based on operational acceptability and location of constraint



Conclusions

- Machine learning validation results indicate operational acceptability may be predictable with high accuracy
- Approach developed to automatically generate TOSs
 - Incorporated with other capabilities, may be useful in route generation
- Most important features describe difference between amendment and original route for:
 - Flight duration
 - Demand to capacity imbalance
- Could enable more effective trajectory negotiation
 - Could enable flight operators to automatically generate routes with high operational acceptability, and therefore have increased predictability
 - Could enable airlines to effectively submit preferences