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flight operators

• Allows trajectory negotiation
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Trajectory Negotiation
• Advantages

– Enables flight operators to tailor trajectories based on 
preferences

– Enables better utilization of available airspace 
resources

• Reducing delay & increasing throughput
– Increases predictability

• Barriers
– Routes must be operationally acceptable
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Can we automatically generate a TOS with high 
probability of operational acceptance?



Literature Review

• Previous NASA work uses machine learning to predict 
operational acceptability of airborne reroute requests
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• Commercial TOS generators under development, 
accounting for historical usage

• Studies completed on operational acceptability

• Models generating strategic routes using optimization, 
constrained to meet criteria that make it operationally 
acceptable



Objective
Automatically generate routes that have high 

probability of operational acceptance
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Method: Use machine learning to train predictors on 
operational acceptance of strategic routes



Approach to TOS Generation
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1. Identify available trajectory options

2. Down-select trajectory options

3. Predict operational acceptability

• Based on historical routes

• Using route clustering
• Defines set of geographically 

distinct routes

• Using machine learning algorithms
• Given static and dynamic 

conditions

4. Select TOS • Based on location of constraint and 
probability of trajectory acceptance 
by ATC
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Flight Plans, Flight Plan Amendments
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2. Down-Select Trajectory Options
• Apply Hierarchical clustering

• Dissimilarity metric calculated as 
Euclidean distance between 
trajectories
– Each trajectory represented by a 

fixed length vector

– Linear interpolation of 2D spatial 
position for 200 evenly spaced 
points
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Given flight location and destination
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2. Down-Select Trajectory Options
• Apply Hierarchical clustering

• Dissimilarity metric calculated as 
Euclidean distance between 
trajectories

• Number of clusters identified based 
on maximizing avg. Silhouette score

• Minimum number of clusters set to 15

𝑆𝑆 =
𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.
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2. Down-Select Trajectory Options
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Given flight location and destination
• Apply Hierarchical clustering

• Dissimilarity metric calculated as 
Euclidean distance between 
trajectories

• Number of clusters identified based 
on maximizing avg. Silhouette score

– For flight from Jacksonville Sector 52 to 
Newark Airport: 16 clusters

• Most commonly flown trajectory in 
each cluster identified for further 
analysis

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport
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3. Predict Operational Acceptability
Given flight location and destination

• Train machine learning 
algorithms on historical flight 
plan amendment data

– Based on static and dynamic 
conditions impacting flight

• Select algorithm based on 
predictive performance using 
cross validation

• Apply chosen algorithm to 
predict operational acceptance 
for down-selected trajectory 
options

20

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport
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3. Predict Operational Acceptability
• Train machine learning 
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plan amendment data
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predict operational acceptance 
for down-selected trajectory 
options
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Training Data
• Positive class: Strategic 

historical flight plan amendments
– Initiated by Traffic Management Unit 

(TMU)
– Filter for amendments:

• Through multiple Center facilities
• Excluding direct routings

• Negative class: Generated 
artificially
– Potential alternative amendments 

identified and assumed 
unacceptable

– Identified using historical data and 
clustering
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August 
2015

September  
2015

July 
2015

Flight Plan Amendments

Filter for TMU Initiated Flight Plan Amendments

3,443

Database of 
Trajectory Options

Hierarchical 
Clustering

Alternative Amendments

5,913 



Features

• Static features
– Historical usage
– Relative flight duration

• Dynamic features
– Imbalance between 

demand and capacity
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August 6, 2015

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport

Original 
Flight PlanHistorical Flight 

Plan Amendment



Features

1. Historical Usage
• Count of historical usage
• Count as reroute
• Full trajectory
• Minimum across waypoint pairs
• Difference in counts between original 

route and amendment
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August 6, 2015

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport

Original 
Flight PlanHistorical Flight 

Plan Amendment



Features
2. Flight Duration

• Flight duration from amendment to 
destination

• Difference in amendment duration 
relative to original flight plan

• Number of sectors between amendment 
and destination

• Difference in number of sectors 
between amendment and destination 
relative to original flight plan
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Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Original 
Flight PlanHistorical Flight 

Plan Amendment

Newark Airport



Features
3. Demand to Capacity Imbalance

• Projected demand calculated using 
NASA Future ATM Concepts Evaluation 
Tool (FACET)

• Capacity defined by sector Monitor Alert 
Capacity and weather impact
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Features
3. Demand to Capacity Imbalance

• Projected demand calculated using 
NASA Future ATM Concepts Evaluation 
Tool (FACET)

• Capacity defined by sector Monitor Alert 
Capacity and weather impact

• Forecast weather impact based on percentage 
overlap between sector and Convective 
Weather Avoidance Model (CWAM) polygons

• 60%, 70% and 80% probability of deviation 
CWAM polygons used

• Multiple metrics calculated:
• Average demand/capacity
• Maximum demand/capacity
• Number of sectors over capacity 
• Whether any sector was over capacity
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• Difference between sum of demand/capacity on amendment and original

August 6, 2015

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Original 
Flight PlanHistorical Flight 

Plan Amendment

Newark Airport



Model Selection
• Model performance estimated using 10-fold cross validation
• 9,356 observations: 36.8% positive, 63.2% negative
• Synthetic Minority Over-Sampling Technique (SMOTE) applied to balance 

dataset
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Ada Boost

Random Forest

SVM-Sigmoid Kernel

SVM-Linear Kernel

Multi-Layer Perceptron
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Accuracy



Feature Importance
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0 0,1 0,2 0,3

Diff. in Duration

Diff. Sum Sector Dem./Reduced Cap. 60%

Diff. in No. Sectors

Diff. Sum Sector Dem./Reduced Cap. 80%

Diff. Sum Sector Dem./MAP

Diff. Sum Sector Dem./Reduced Cap. 70%

No. Sectors in Amendment

Amendment duration

Diff. Sum Center CWAM Overlap 60%

Max Sector Dem./MAP of Amendment

Feature Importance



4. Select TOS

• TOS selected based on:
– Probability of operational 

acceptance
– Location of constraint
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Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport



4. Select TOS
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• TOS selected based on:
– Probability of operational 

acceptance
– Location of constraint

• Other factors may also be 
important
– Wind optimality
– Fueling
– Equipage 

Jacksonville 
Sector 52

Fort Lauderdale 
Airport

Newark Airport



Sample Application: Pre-Departure
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Newark Airport

Dallas-Fort Worth Airport



Sample Application: Pre-Departure
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Dallas-Fort Worth Airport

Newark 
Airport



Sample Application: Pre-Departure
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1. Identify available trajectory options based on historical routes

Dallas-Fort Worth Airport

Newark 
Airport



Sample Application: Pre-Departure
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2. Down-select trajectory options using clustering

Dallas-Fort Worth Airport

Newark 
Airport



Sample Application: Pre-Departure
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3. Predict operational acceptability using machine learning

Dallas-Fort Worth Airport

Newark 
Airport



Sample Application: Pre-Departure
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4. Select TOS based on operational acceptability and location of constraint
Newark 
Airport

Dallas-Fort Worth Airport



Sample Application: Pre-Departure
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4. Select TOS based on operational acceptability and location of constraint

Historical Amendment
Original Route

Dallas-Fort Worth Airport

Newark 
Airport



Conclusions
• Machine learning validation results indicate operational 

acceptability may be predictable with high accuracy
• Approach developed to automatically generate TOSs

– Incorporated with other capabilities, may be useful in route 
generation

• Most important features describe difference between 
amendment and original route for:
– Flight duration 
– Demand to capacity imbalance

• Could enable more effective trajectory negotiation
– Could enable flight operators to automatically generate routes 

with high operational acceptability, and therefore have increased 
predictability

– Could enable airlines to effectively submit preferences 
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