

Concepts of Solar and Stellar Convection and Dynamos

Irina Kitiashvili NASA Ames Research Center

Concepts of Solar and Stellar Convection and Dynamos

Irina Kitiashvili NASA Ames Research Center

Hertzsprung–Russell diagram

Credit: ESO

Convective Zone

Radiative Zone

Core

Compressible fluid flow
in a highly stratified medium
3D multi-group radiative
energy transfer between the
fluid elements

Real-gas equation of state
Ionization and excitation
of all abundant species
Small-scale turbulence
Magnetic effects

StellarBox code (Wray et al, 2015, 2018)
Stagger code (Galsgaard & Nordlund, 1996)
MURaM code (Vogler, 2003)
CO⁵BOLD code (Freytag et al., 2002)
Bifrost code (Gudiksen et al. 2011)

3D stellar convection as a grid of stellar parameters

Trampedach et al., 2013, 2014

3D stellar convection as a grid of stellar parameters

Trampedach et al., 2013, 2014

Stellar Models

Kepler Targets

	-			1	
Kepler ID	Teff	Log G	Mass	4.1	
11244118	5507	4.504	0.94		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3427720	5780	4.44	1.01	4.2	
4076177	6098	4.404	1.12		
10119517	6225	4.375	1.17	4.3	
6131093	6438	4.358	1.25	g(g)	2.0 1.8 1.4 1.4
11138047	6519	4.284	1.29		1.3
11342880	6657	4.244	1.35	4.4	12 ¥
6306896	6822	4.173	1.45	-	1.2
11649699	6939	4.211	1.46	4.5	1.1 **
9962653	7039	4.277	1.47		1.0
5466537	6979	4.141	1.52	4.6	0.9
8677585	7347	4.172	1.6		9000 8000 7000 6000 5000
10451090	7577	4.134	1.7		I _{eff} , K
L	1	1			culated with the stellar evolution code

CESAM (Morel 1997; Morel & Lebreton 2008)

Properties of stellar surface convection

Distribution of vertical velocity, revealing changes in granulation structure and formation of multi-scale convective cells with increasing mass

StellarBox code

Observations vs. models

Kitiashvili et al., 2015

Vertical velocity at the visible surface and at 2, 4, 8, 12, and 16 Mm below the surface.

Green and blue are upflows; yellow and red are downflows.

Subsurface Stellar Dynamics: 1.35M_{Sun}

Power spectrum of low-degree (radial) stellar oscillations for vertical velocity Vz, pressure P, and temperature T Power spectrum of low-degree (radial) solar oscillations for Doppler shift at different angular distances from the disc center (blue) to 60 deg (red).

KIC9962653, M=1.47M_{SUN}

Vertical slice through the computational domain shows:

a) vertical velocity, b) density, c) temperature, and d) sound speed perturbations from the stellar photosphere to the radiative zone.

Large-scale density fluctuations in the radiative zone are caused by internal gravity waves (g-modes) excited by convective overshooting.

Convection zone dynamics

M=1.47M_{sun}

Overshoot layer

Density fluctuations

M=1.47M_{sun}

Angular degree (l) frequency (n) diagram, obtained from numerical StellarBox simulations for a 1.47 M_{Sun} Kepler target star.

3

mHz

5

Vertical profiles, obtained from a 3D simulation of a 1.47 M_{Sun} F-type star: a) *rms* of velocity V (black), vertical Vz (red) and horizontal Vh (blue) components of velocity; b) *rms* of temperature T' (black) and sound speed c'_s (blue) perturbations; c) enstrophy w (black) and helicity *H* (blue); d) *rms* of density r' (black) and gas pressure p' (blue) perturbations. Vertical dashed lines indicate the bottom boundary of the convection zone of the corresponding 1D stellar model: z_{cz} =-28.5 Mm.

Comparison of the interior structure of a moderate mass star (M=1.47M_{sun}) calculated from 1-D mixinglength theory and from a 3D simulation: a) temperature, T; b) adiabatic exponent, g;

c) the temperature gradient, $\nabla = \frac{d \log T}{d \log P}$; d) Ledoux parameter of convective stability $A^* = \frac{1}{\gamma} \frac{d \log P}{d \log r} - \frac{d \log \rho}{d \log r}$

Kitiashvili et al., 2016 Trampedach et al., 2018

Deviations between the 3D simulation and 1D model of a star with mass M=1.47 M_{sun} as a function of depth, z=r-R, for: a) the sound speed squared, dc²/c²; b) density, dr/r; c) Ledoux parameter of convective stability, A*; and d) adiabatic exponent, g. Panels e-h show the corresponding deviations of the solar properties obtained by helioseismology inversion (Kosovichev 1999, 2011) from a 1D standard solar model (Christensen-Dalsgaard et al. 1996).

Vertical dotted lines show the location of the bottom boundary of the convection zone.

Kitiashvili et al., 2016

Multiscale dynamo process

Synoptic magnetogram

(Radick, 2000; Berdyugina 2005)

SDO/HMI

High magnetizerun ağışıka) i-ser (1710) inas

www.helioviewer.org

Small-scale (turbulent) dynamo

Magnetic field distribution at the photosphere

The blue-red color scale corresponds to magnetic field strengths from -300 to 300 G. The typical size of the magnetic structures is 100 – 300 km.

Magnetic field generation in the surface layers

Salhab et al. 2018

Conclusions

- "Ab initio" (or "realistic") simulations based on first principles are now a primary tool for modeling stellar surface and subsurface physics.
- Convective structure in main-sequence stars dramatically changes as the stellar mass increases.
 - The convection zone shrinks and becomes more vigorous, with plasma motions reaching supersonic speeds, and develops multi-scale convective cell structures quite different from solar granulation and supergranulation.
- For $M > 1.35M_{Sun}$ the convection zone is relatively shallow, and simulations can cover it in its entirety plus a convectively stable layer of the radiative zone.
 - This allows investigation of overshooting, turbulent mixing, and excitation of internal gravity waves at the bottom of the convection zone.
- The presence of small-scale magnetic fields can impact the observed bolometric intensity and flux.