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Background
• CO2 gas from Mars atmospheric simulant gas was taken and 

condensed in a cryocooler (Muscatello et al.)
• Condensed CO2 was allowed to sublime and used as feed gas 

for the reaction
• 7 hour runs for 4 days 
• Obtained reaction efficiency with nickel-based catalyst

• New Ru/Al2O3 catalyst was used (Meier et al.)
• Reactant rates and temperature were increased to 

characterize reactor design and to determine catalyst 
performance limits and durability

• Unable to run at off-nominal conditions – catalyst damaged 
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Background
• Different Sabatier designs and configuration to maximize CH4 

while meeting purity requirements for a Mars ISRU Propellant 
Production Plant (Hintze et al.)

• None met purity requirements
• Advantages of adiabatic vs. isothermal systems 
• Optimization of reactors and condensers 
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Overview

• Catalyst Screening: Catalysts tested in their capacity for 
continuous production of CH4 gas via the Sabatier reaction 
and possible effects of:

• Launch vibration loads
• Liquid water
• Particulate contamination
• Chemical contamination
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Testing Method



International Conference on Environmental Systems, 
Boston, MA   2019 6

Testing Method
• Catalysts used

• Clariant® (Nickel monoxide, impregnated through Al2O3 base)
• 0.5% Ru coating on Al2O3 base
• 2% Ru coating on Al2O3 base 

• Clamshell heater, with CO2 and H2 gas feeds supplied through 
flow controllers connected on top of reactor

• Condenser cooled to 3°C 
• Water collected at exit of reactor as byproduct

Clariant® (g) 0.5% Ru (g) 2.0% Ru (g)
Mass (g) 27.9 ± 0.5 20.0 ± 0.6 14.3 ± 0.3
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Vibration Test

• Background run for each 
reactor to determine baseline 
performance

• Reactors were affixed to 
shaker table and exposed to 
vibration profile – simulated 
launch environment (20 Hz –
2000 Hz, overall vibration force 
of 14.1 grms)

• Vibration tests using clear 
plastic tubes were carried out 
to evaluate packing methods



International Conference on Environmental Systems, 
Boston, MA   2019 8

Vibration Test

• Performance of reactors measured after exposure to 
vibrational forces 

• Test data compared before and after exposure to launch 
vibration to determine impact of vibration on each catalysts 
used

Preliminary vibration testing took place in plastic tubes. 
Data presented here used reactor configuration - 1” SS 
packed-bed reactor. 
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Vibration Test

Catalyst pellets before (left) and after (right) vibration tests
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Liquid Water Test

• Background run for each reactor to determine material’s 
baseline performance

• Reactors were filled with water to maximum capacity through 
the top to ensure catalyst was completely submerged

• Water was left inside of reactors for a approximately 18 hours, 
emptied, and placed in a vacuum oven over night to ensure 
catalyst dried prior testing

• Measured production of CH4 gas after catalyst was subjected 
to liquid water exposure 

• Test data processed and compared before and after to 
determine impact of water exposure on each of the catalysts 
used
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Liquid Water Test

Catalyst pellets before (left) and after (right) liquid water tests
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Particle Contamination Test

• No backgrounds performed
• Performance of reactors compared to average of previous 

background runs 
• Mars JSC-1 simulant sieved to 5 µm used for particle 

contamination of catalysts
• Amount of particulate to be added determined, taking into 

consideration total flow and filtration efficiency
• Test data compared to determine impact of dust particles on 

each catalyst used
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Particle Contamination Test

Catalyst pellets before (left) and after (right) particle contamination tests
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Chemical Contamination Test

• No backgrounds performed
• Performance of reactors compared to average of previous 

background runs 
• HCl and FeSO4 used as surrogates; added to reactor upstream 

to allow contaminants to flow over reactor bed during reaction 
• Calculations performed to determine amount of chemicals to 

be added
– ferrous sulfate heptahydrate (FeSO4·7H2O), 4.2wt%
– hydrochloric acid (0.1M HCl), 0.6wt%

• Test data compared to determine impact of chemicals on each 
catalysts used
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Chemical Contamination Test

Catalyst pellets before (left) and after (right) chemical contamination tests
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Conclusion

• Clariant®, 0.5% Ru/Al2O3, and 2.0% Ru/Al2O3 catalysts tested 
to evaluate capacity for production of CH4 gas via Sabatier 
reaction and possible effects of harsh conditions encountered 
on a Mars mission 

• Vibrational forces did not have a significant effect on the 
catalyst performance

• Liquid water exposure appears to have slightly increased CH4
formation for the 2% catalyst but otherwise did not show 
significant effects

• Particulate and Chemical contamination exposure did not 
have a significant effect on the catalyst performance. 
(Vibration and Liquid water baselines were used)
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Conclusion

• All catalysts continued to perform, with minimal change, 
regardless of circumstances; none were largely affected either 
physically or chemically

• Disparities in testing results likely stem from variation in 
thermocouple placement from one test to the next – causing 
inconsistencies in reactor operating temperature

• Any of these catalysts will be an adequate choice for the 
overall design study of the Mars IRSU Propellant Production 
Plant
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Future Work

• Effective size and mass scaling for the reactor and product 
separation required for a successful system

• Determine how the water condenser will perform in a 
reduced gravity environment

• Sabatier reaction is also being targeted for lunar oxygen 
liberation via the carbothermal route

• Volatile separation to avoid poisoning Sabatier catalyst 
• Operating conditions to meet reactant and product 

requirements
• Carbon monoxide as key reactant
• Minimize CH4 loss and carbon deposition in reactor system
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