

Large UV / Optical / Infrared Surveyor

Telling the story of life in the universe

Technologies to Enable the Next Great Observatory

Matthew R. Bolcar (NASA GSFC) & the LUVOIR Mission Concept Study Team

The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four mission concepts being studied by NASA for the 2020 Decadal Survey in Astronomy and Astrophysics. Enabling a mission as ambitious as LUVOIR requires an array of technologies. Critically, a systems-level approach must be taken to developing these technologies, guided by architecture studies to place each technology in the appropriate system context.

Three technology systems enable the LUVOIR science objectives: the High-contrast Coronagraph Instrument system, the Ultrastable Segmented Telescope system, and the Ultraviolet Instrumentation system. Each of the technology systems comprise the individual technology components that must be developed and demonstrated as a system. Supporting engineering manufacturing

Component	Implementation Options	State of the Art	Capability Needed	FY19 TRL	In LUVOI Baseline
Coronagraph Architecture	Apodized Pupil Lyot Coronagraph (APLC)	6.3x10 ⁻⁶ over 6% bandpass in air. Validated models with WFIRST CGI SPC demonstrations		4	~
	Vortex Coronagraph (VC)	8.5x10 ⁻⁹ contrast over 10% band with unobscured pupil. SCDA modeling for unobscured,	1x10 ⁻¹⁰ raw contrast	3	√
	Phase-Induced Amplitude Apodization (PIAA)	SCDA modeling results for unobscured, segmented pupil	<4 λ /D inner working angle	3	
	Hybrid-Lyot Coronagraph (HLC)	3.6x10 ⁻¹⁰ contrast over 10% band in DST. SCDA modeling for unosbcured segmented pupil	Robust to stellar diameter and jitter	3	
	Nulling Coronagraph (NC)	5×10^{-9} narrowband at 2.5 λ /D		3	
Deformable Mirrors	Micro-Electro-Mechanical Systems (MEMS)	Available up to 64 x 64 actuators; 8.5x10 ⁻⁹ contrast demonstrated with 32 x 32 actuators	Minimum 64 x 64 actuators (>100 x 100 actuators is enhancing)	4	✓
	Lead-Magnesium-Niobate (PMN) Macro-scale	<1x10 ⁻⁸ contrast demonstrated with 48 x 48 actuator Xinetics DMs (WFIRST CGI Testbed)		5	
Wavefront Sensing	Out-of-band Wavefront Sensing	Model predicting <10 pm residual error with nonlinear ZWFS, Mv = 5 source	$ \begin{array}{l} \text{FS, Mv} = 5 \\ \hline \text{Wavefront stability ~10 pm RMS} \\ \hline \text{RMS focus,} \\ \hline \text{TCGI} \\ \hline \text{CGI} \\ \hline \text{-1 Hz bandwidth with Mv < 9} \\ \hline \text{source} \\ \hline \end{array} $	3	~
	Low-order Wavefront Sensing	<pre><0.36 mas RMS line-of-sight residual error; <30 pm RMS focus, Mv = 5 source (WFIRST CGI Testbed)</pre>		6	✓
	Artificial Guide Star	Concept study for guide star spacecraft and wavefront sensing control loop completed.		3	
UV/VIS Low- noise Detector	Electron-Multiplying CCD	1k x 1k WFIRST Detector: 7x10 ⁻⁵ e-pix/s dark current 0 e- read noise 2.3x10 ⁻³ CIC	3x10 ⁻⁵ e-/pix/s dark current 0 e- read noise 1.3x10 ⁻³ e-/pix CIC	4	~
	Hole-Multiplying CCD	Prototype devices fabricated with gains > 10x (>20x in at least one device)	>80% QE at all detection wavelengths 4k x 4k array size	3	
NIR Low-noise Detector	HgCdTe Photodiode Array	H4RG-10 currently meets needed capability @ 170 K	< 1x10 ⁻³ e-/pix/s dark current	6	~
	HgCdTe Avalanche Photodiode	1.5x10 ⁻³ e-/pix/s dark current < 1 e- read noise 320 x 256 array size	< 3e- read noise 4k x 4k array size	4	
Mirror Substrate	Closed-back ULE (rigid body actuated)	7.5 nm RMS surface figure area with no actuated figure correction	~5 nm RMS surface figure error	5	√
	Closed-back ULE (surface figure actuated)	< 200 Hz first free mode ~10 kg/m ² areal density	> 400 Hz first free mode	4	
	Open-back Zerodur (rigid body actuated)	Meets wavefront error requirement, but first mode and areal density are challenges		4	
Actuators	Combined piezo/mechanical	JWST mechanical actuators; Off-the-shelf PZT actuator with 5 pm resolution	> 10 mm stroke < 10 pm resolution	3	✓
	All-piezo		< 1 pm / 10min creep	3	
Edge Sensors	Capacitive	5 pm in gap dimension, 60 Hz readout	<4 pm sensitivity at 50-100 Hz rate (control bandwidth of 5-10 Hz)	3	~
	Inductive	1 nm / sqrt(Hz) for 1-100 Hz in shear; 100 nm / sqrt(Hz) for 1-10 Hz in gap		3	
	Optical	20 pm / sqrt(Hz) up to 100 Hz		3	
	High-speed Speckle Interferometry	< 5 pm RMS at kHz rates; requires center-of-curvature location and high-speed computing		3	
Laser Metrology	Laser truss with phasemeter electronics	Planar lightwave circuit; 0.1 nm gauge error; LISA-Pathfinder heritage laser	< 100 pm sensitivity at 10 Hz rate (control bandwidth of 1 Hz)	4	√
Vibration Isolati	Non-contact Isolation System	 > 40 dB transmissiability isolation > 1 Hz; Requires electronics development and performance validation 	 > 40 dB transmissiability isolation > 1 Hz 	4	~
Far-UV Broadband Coating	AI + eLiF + MgF ₂	Meets performance requirements, but requires demonstration on meter-class optics; requires	>50% reflectivity (100-115nm) >80% reflectivity (115-200nm) >88% reflectivity (200-850nm)	3	√
	AI + eLiF + AIF ₃	validation of uniformity, repeatability, environmental stability	>96% refelctivity (> 850nm)	3	
	Al + eLiF	Meets performance requirements, but is environmentally unstable	(over entire primary mirror) over corongraph bandpass (200 - 2000 nm)	5	
Microshutter Ar	Next-gen Electrostatic Microshutter Arrays	840 x 420 prototype demonstrated, but requires development survive vibe and acoustic testing	840 x 420 array format, two-side buttable	3	~
Large-format Microchannel Plates	Csl	Meets requirements for 100-150 nm	200 mm x 200 mm tile size >30% QE between 100 - 200 nm	6	√
	GaN	Meet requirements for 150-200 nm range; requries development for large tile size and integration with		4	√
	Bi-alkali	cross-strip readout. GaN has better solar blind performance.		4	
	Funnel microchannels	pernonstrated 50% improved quantum efficiency with CsI photocathode		4	
Large-format High- resolution Focal Plane Arrays	8k x 8k CMOS	4K x 4K devices exist, require development for 8k x 8k and readout optimization	8k x 8k format, <7 micron pixels, three-side buttable ~1 e- read noise ~1x10 ⁻⁴ e-/pix/s dark current at 170 K	4	~
	4k x 4k CCD	8k x 8k devices exist with 18 micron pixels; lacks programmable high-speed region-of-interest readout for guiding capability		5	

development efforts are also identified for early risk reduction.

It is important to note that the high-contrast coronagraph instrument and ultra-stable segmented telescope technology systems are tightly coupled; the performance capabilities of one system drive the requirements of the other. Similarly, the ultraviolet instrumentation technology system is loosely coupled to the other two; while the relative performance affects each system, they do not necessarily drive one another. This coupling between systems requires continuous cross-validation between the technology development paths. It is therefore critical that the technology development plan be executed in parallel with a detailed Pre-Phase A Architecture Study to provide the necessary systems-level perspective and cross-validation.

Credit: D. Jones, NASA/GSFC

LUVOIR is a mission concept being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey

