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Benchmarking quantum algorithms 

• Quantum speedup:
• Any possible classical algorithms — Proven speedup, Shor, Grover
• State-of-art classical algorithms
• A general-purpose classical algorithm — E.g., SA, QMC

• A different type of algorithms: quantum heuristics
• Quantum annealing (QA)
• Variational quantum eigen solver (VQE)
• Quantum approximate optimization algorithm (QAOA)

 Purpose:
Approximate optimization
Exact optimization
Sampling: specific distribution, fair sampling
Universal QC

No guaranteed speedup as a general algorithm

Universality proven through demonstrating ability 
to generate universal basis sets.

suitable for NISQ device

[Rønnow, Wang, Job et. al., Defining and detecting quantum speedup, Science 2014]

[Lloyd, Quantum approximate optimization is computationally universal, arXiv:1812.11075



Benchmarking quantum heuristics 

Aspects
•  Purpose:

— Approximate optimization
— Exact optimization
— Sampling: specific distribution, fair sampling
— Universal QC

• Metrics:
— approximation ratio
— prob-to-exact-solution, 
— fairness, distance between distributions
— quantum complexity

• Additional Metrics for NISQ
— Circuit depth

All-to-all connectivity of physical qubits
Easier to scale connectivity (2D grid, Google bristlecone, Rigetti, IBM)
Logical quantum circuit to physical circuit: Circuit Compilation (gate scheduling)
Choice of basis gate sets

— Robustness
Variational nature will tolerate certain errors.
More actively sought fault-tolerance?

— Classical parameter setting
Analytical methods: deterministic parameters
How to update parameter values (gradient based, statistical optimization)
Quantum control landscape: local minima; barren plateau

— Benchmarking problem set
Typical vs worst-case
Small and hard

Scaling with n



Illustrating using QAOA for graph coloring

• — Choice of Phase-Separator and Mixer
Use cost function (standard)
Specially designed: 1D chain with parity-dependent parameters (universal QC)

• — Choice of initial states
• — Measurement: What can we infer from the expected value / average performance?

— Circuit depth
All-to-all connectivity of physical qubits
Easier to scale connectivity (2D grid, Google bristlecone, Rigetti, IBM)
Logical quantum circuit to physical circuit: Circuit Compilation (gate scheduling)
Choice of basis gate sets

— Robustness
Variational nature will tolerate certain errors.
More actively sought fault-tolerance?

— Classical parameter setting
Analytical methods: deterministic parameters
Variational:

How to update parameter values (gradient based, statistical optimization)
Quantum control landscape: local minima; barren plateau

— Benchmarking problem set
Typical vs worst-case
Small and hard



One leading Candidate of quantum heuristics: 
Quantum Approximate Optimization Algorithms (QAOA) —>

Quantum Alternating Operator Ansatz

[Farhi,  Goldstone, and Gutmann, arXiv:1411.4028]

• One-line summary of the algorithm

time

Cost Mix



Choice of Mixer: QAOA for constrained optimization

• How are constrained problems approached? 

Encode the constraints as penalty in the cost function.  — Lagrange multipliers 

Commonly practiced in quantum annealing. 

Alternative: Use a mixer/driver that contains the quantum evolution in the subspace 
that satisfies the constraints.   

Original motivation:     Alleviate embedding burden 

Another Advantage:     Smaller search space! 

We extend this idea to QAOA, formulate such mixers for a number of problems 

and 

study the performance of such alternate mixers

[Hen & Spedalieri, 2016]

Concept: [Hadfield, Wang, O'Gorman, Rieffel, Venturelli, Biswas, arXiv 1709.03489]; 

Performance & Circuit: [Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314]



QAOA for graph coloring problem

• Goal: Assign colors to vertices to maximize properly-colored edges (connecting two 
vertices of different color)
Encoding: 
Binary:                             whether vertex v is assigned color-c

Constraints: 
Each vertex should have exactly one color:

1
0

0
✓

✓
✓ ✓



Constraints:  
Each vertex should have exactly one color: 
Implemented as penalty in cost: 

Or 
Stay in the feasible subspace: 

XY-model

Advantage: 
Smaller search space: evolution contained in feasible subspace 
Closer to hardware:  

XY interaction (or iswap-gate) can naturally happen on certain solid-
state QC candidate systems

1
0

0

QAOA for graph coloring problem



1
0

0

QAOA for graph coloring problem

Cost function Cost Hamiltonian
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decimal one-hot Apply IXX decimal

0 000 011 3
1 001 010 2
2 010 001 1
3 011 000 0
4 100 111 7
5 101 110 6
6 110 110 5
7 111 100 4

Table I. Demonstration of deriving the partition corresponding to operator IXX on the binary encoding, Eq. (25)

.

model that increases the dimensions of the graph, such
as in the case where one-hot-encoding is used, simulating
the interaction term removes the necessity of encoding
techniques such as minor embedding or classical logical
encoding [32, 33].

V. SIMULATION RESULTS

In this section, we present the results of numerical
simulations of QAOA applied to the max--Colorable-
Subgraph problem. We first compare the performance
of the XY mixer to that of the X mixer with penalty.
We then more deeply explore the behavior of XY mixers,
looking at general features of their performance on small
hard-to-color graphs, and comparing complete-graph XY
mixers against ring XY mixers.

To acquire a good set of QAOA parameters, stochas-
tic optimizer is needed, in Appendix. B we show rugged
landscape with local optima in the parameter space that
would cause problem for deterministic optimizing meth-
ods like gradient descend. We instead use bsin-hopping
with BFGS to obtain (sub)optimal parameters.

A. The death of X-mixer

We use a simple example, 2-coloring and 3-coloring of
a triangle to demonstrate the performance comparison of
XY and X mixers.

Note that the penalty weight ↵ in general a↵ects the
performance of the algorithm. In Fig. 2 we show that
for 2-coloring the approximation ratio optimized over the
parameter set (�,�) for each penalty weight ↵. The best
approximation ratio, r, takes value 0.75 while with XY
driver QAOAp=1

gets r = 1.
In Fig. 2, while the penalty strength has an e↵ect on

the behavior of level 1 QAOA, there appears to be no
clear intuition for choosing a good value. In particular,
the minimum penalty that guarantees the optimal state
being the optimal state in the feasible subspace, indi-
cated by the red arrows on the plots, does not stand out,
nor does the penalty value that guarantees separation
between energies feasible and infeasible states, indicated
by the the blue arrows. This supports our argument in

Sec. sec:penalty that the role of energy gap plays no clear
role in QAOA.

For 3-coloring, in Fig. 3 we plot how the approximation
ratio varies in the 2-dimensional (�,�) space, for using
the X mixer and for using the XY mixer. While with the
X mixer the QAOAp=1

gives approximation ratio ⇠ 0.2
across the parameter value range, with the XY mixer
parameter values that correspond to ⇠ 0.8 can easily
be found. This example thus shows significant perfor-
mance advantage in using the XY as compared with the
X mixer.
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Figure 2. (a) 2-coloring (b) 3-coloring of triangle with level 1
QAOA. The highest approximation ratio across the parame-
ter sets (�1, �1) is plotted versus the penalty weight ↵. The
red arrow at ↵ = 0 indicates the minimum penalty that guar-
antees the optimal state being the optimal state in the feasible
subspace, and the blue arrow at ↵ = 9 indicates the penalty
value that guarantees separation between energies feasible and
infeasible states.

B. Small and hard-to-color graphs

For a fixed classical algorithm, a slightly-hard-to-color

graph is a graph for which the algorithm will sometimes
yield the optimal solution. Similarly, a hard-to-color

graph is one such that the chosen algorithm never yields
the optimal solution. Two examples are the Envelope
and the Prism graphs,[34] sketched in Figure. 4. The
Prism graph is the smallest slightly-hard-to-color graph
for the smallest-last(SL) sequential coloring method and

Choice of “Cost Hamiltonian”: Role of energy in QAOA?
9

(a) (b)

Figure 3. Numerical results for level 1 QAOA on the problem
of 3-coloring of a triangle graph. (a) using X mixer along
with phase-separating Hamiltonian, Eq. (8) where the penalty
weight is taken to be the numerically determined optimal
value ↵⇤ = 1.7. (b) using the XY mixer with W-state be-
ing the initial state.

the Envelope graph is the smallest hard-to-color graph
for the largest-first(LF) sequential method. Note that
these classical algorithms are aiming to compute the
chromatic number, while in this paper we focus on find-
ing the maximal colorable subgraph. Although finding
the max-colorable subgraph could serve as a subroutine
for determining chromatic numbers, the chromatic num-
ber can also be directly attacked by QAOA using a much
more complex mixer.[2] Nevertheless we are not aiming
at doing side-by-side comparison of quantum and classi-
cal algorithms, and will use these small graphs only as a
proof-of-principle demonstration of the QAOA with XY
mixers.

What graphs to color on NISQ era hardware? 

• For a classical algorithm, there is a concept of 
smallest slightly-hard-to-color graph:  applying the algorithm will sometimes 
yield the optimal solution
&
smallest hard-to-color graph: applying the algorithm never yields the optimal 
solution

• Examples

Envelope Prism

Small & Hard graphs

Figure 4. The two small and hard-to-color graphs: Envelope
and Prism. A valid 3-coloring is shown on each graph.

1. Performance of QAOA with the simultaneous ring mixer

With the simultaneous ring mixer, Figure. 5 shows
the results for QAOA levels 1 to 6. For each level, the
W-state is used as initial state, and stochastic search
(basin-hopping with BFGS) is performed to optimize the
expected value of the cost Hamiltonian over the angle
sets. The approximation ratio corresponding to the op-
timal expectation value is plotted as filled circles. Even
at level one, the approximation ratio takes a high value
0.8, and this value quickly approaches 1 as the level in-

creases. Furthermore, for each level, we computed the
probability of getting the actual optimal solution (a valid
3-coloring) upon measurement. At level one, this proba-
bility is slightly lower than 0.2, and quickly goes above 0.6
at level-3, which implies that repeating the experiment
3 times, one will find a valid coloring with probability
> 0.9.

Figure 5. The Prism graph. Dots are approximation ratios
and crosses are the expected probability of getting the opti-
mal coloring. For each QAOA level, results are shown at the
(sub)optimal angles resulted from a basin-hopping search.

2. E↵ect of initial states

The W-state – as both an even superposition of all fea-
sible classical states, and the ground state of the simul-
taneous ring mixer – is a natural candidate for the initial
state for QAOA. It involves multiple two-qubit gates to
prepare. An easier-to-prepare state for each vertex can
be defined via a randomly-assigned coloring (feasible but
not necessarily optimal), | Ci, i.e., a randomly drawn bit
string of Hamming weight one. Preparing such a state
involves only n single-qubit gates.

We study both initial states for the prism graph with
simultaneous ring mixer. For level-1 QAOA, the best
achievable optimization ratio (optimized over all angle
sets (�, �)) for W-state is higher than the classical Ham-
ming weight 1 state | iC . Notice that for | iC , the
phase-separating unitary commutes with the density ma-
trix of the state, hence has no e↵ect to the state evolu-
tion. As a result, the whole circuit for level-1 QAOA
is equivalent to applying the mixing unitary followed by
measurement. We further simulated higher levels, and in
Figure. 6 show the performance of QAOA with the W-
state versus a classical state as initial state. We found
that with the classical initial state, the performance of
QAOA is significantly lower than using the W-state as

• Size of search space
Penalty + X-mixer       Full Hilbert space
XY mixer                     Feasible subspace
Ratio:                          The feasible space shrinks exponentially with n.

1
0

0



Bench marking problem sets: What graphs to color on NISQ era hardware? 

• For a classical algorithm, there is a concept of 
smallest slightly-hard-to-color graph:  applying the algorithm will sometimes 

yield the optimal solution
&
smallest hard-to-color graph: applying the algorithm never yields the optimal 

solution

• Examples

Envelope Prism

Small & Hard graphs



Measurement/Parameter update: What can we infer 
from the expected value / average performance?

11

Figure 8. Approximation ratio (solid lines) and probability
to exact solution (broken lines) for QAOA with ring simulta-
neous mixer. n = 6 (crosses) vs n = 7 (filled circles).

the QAOA level are highly consistent across graphs, bear-
ing the same shape for the Prism and Envelope graphs.
For each problem set, the approximation ratio showed
very little deviation from the mean (demonstrated by the
small error bars in Figure. 8).

b. Larger graphs are harder to color. As expected,
for the same , as n increases, the performance of QAOA
with the same type of mixer decreases, see Figure. 8 for
comparison of the simultaneous ring-mixer for n = 6 and
n = 7.

c. Complete-graph mixer is better than the ring

mixer. For the same problem size n, the simultaneous
complete-graph mixer demonstrates better performance
than the simultaneous ring-mixer in QAOA levels from
1 to 10. See the scatter plot for QAOA level-2 and level-
8 in Figure 7. For small QAOA levels, this advantage
is uniform cross instances for smaller levels, as shown
in Figure 7 (a) for level-2 where for all 282 instances
the complete mixer generates higher approximation ratio.
The advantage is decreasing as QAOA level increases, see
comparison of (a) and (b). This is possibly due to the
approximation ratio getting close to 1. We also speculate
that the QAOA level where this closeup happens would
vary with, , the number of colors.

d. Similar performance between the simultaneous and

parity mixers for small . We also study -coloring of
all connected graphs (regardless of chromatic number) of
size n = 3, 4, with varying  to compare simultaneous
vs partitioned ring mixers on di↵erent ring sizes. Since
for  = 4, the simultaneous and the parity mixers are
equivalent, we will need to go for higher  to examine
the di↵erence, however, numerical power is limited by
the number of qubits n, we thus examined two classi-
cally trivial cases, n = 4,  = 6 and 8 (trivial coloring
exists). Both approximation ratio and probability of ex-
act solution are high due to the small problem size, and
no noticeable di↵erence is observed between the perfor-
mance of partitioned and simultaneous mixers. Exten-
sive studies on larger problem sizes are needed to further
evaluate these two types of mixers.

2. Typical solution upon measurements

Note that our optimization over the set of angles is de-
signed to maximize the expected value, and the high ap-
proximation ratio discussed in Section VC 1 is also about
the expected value. For approximate optimization, the
expectation value of the approximation ratio is not the
whole story. One also cares about the probability of get-
ting the optimal or near-optimal states upon measure-
ment. We apply the argument and analysis on the tail
probability in Sec. II, Eq. (1), on the case of 3-coloring of
the Envelope graph (11 edges), and show in Figure 9 the
theoretical lower bound in probability of getting a solu-
tion with costs 10 or 11, i.e., the valid coloring or only
one improperly-colored edges. The true probability from
evaluating the wavefunction is shown for comparison. For
QAOA level three and up, the bound inferred from the
approximation ratio gives us confidence that with greater
than 50% probability we will get the optimal or the next
best solutions.

Viewing the QAOA as an exact solver, as observed
in the case of small hard-to-color graphs, for the bench-
marking problem sets, we also see that as p increases,
along with the increase in r⇤, there is a more drastic
increase in the prob-to-optimal-solution. In Fig. 8 we
also plot the mean prob-to-optimal-solution as p changes,
with error bars indicating the standard deviation over the
graphs in the set.

QAOA level
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Lower bound on Prob(E=10, 11)

Figure 9. 3-coloring of Envelope graph (11 edges). QAOA
with simultaneous ring-mixer. For each QAOA level, the
probability of getting the top two highest approximate re-
sults (cost 11 and 10) is shown in comparison to the bound
given by Eq. (1) with the observed approximation ratio as
parameter.
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X 2 {0, 1, . . . ,m}, if the mean value is µ then for any
l  bµc, where b·c is the floor function, the probability
of x taking value larger than l is lower-bounded as

Pr(X > l) � µ� l

m� l
. (1)

In Appendix. A we provide a proof for Eq. (1) under
more general assumptions. In Sec. V C we will see exam-
ples: for our QAOA results of high approximation ratio,
without examining the energy distribution, we can in-
fer with high confidence that a typical solution will have
high cost.

III. PROBLEM FORMULATION

In this section we formulate the Max--Colorable-
Subgraph problem in binary form using a one-hot-
encoding representation for the possible colorings of each
node. Using binary variable xv,c to indicate whether ver-
tex v is assigned color c, the one-hot-encoding formu-
lation requires solutions live in a subspace of the full
Hilbert space that satisfies:

P
c xv,c = 1, the feasible

subspace. This results in two formulations of the color-
ing problem for QAOA–with and without a penalty term
in the phase-separator. We also recap nomenclature for
various XY -Hamiltonian drivers introduced in Ref. [2]
which becomes necessary when discussing their circuit
implementations.

The Max--Colorable-Subgraph problem is formulated
as follows:

Problem 1. Given a graph G = (V,E) with n vertices
and m edges, and  colors, maximize the size (number of
edges) of a properly vertex-colored subgraph.

The max--Colorable-Subgraph problem is encoded
into qubits with a one-hot encoding fashion to represent
the colors. Each node of the graph G is expanded into 
qubits where each qubit occupation is used to represent a
coloring of the node. For example, a three-coloring prob-
lem on a graph of 4 vertices requires 12 qubits depicted
in Figure 1.

In the feasible subspace where each vertex is assigned
exactly one color, the cost/objective function

fC = m�
X

j=1

X

{v,v0}2E

xv,jxv0,j (2)

counts the properly-colored edges, and we aim at maxi-
mizing fC . By the replacement x ! (1��z)/2 in Eq. (2),
the corresponding quantum objective Hamiltonian is

HC =
1

4

⇣
(4 � )m1 + H 0

C

⌘
, (3)

where

H 0
C =

nX

v=1

dv

X

j=1

�z
v,j �

X

j=1

X

{v,v0}2E

�z
v,j�

z
v0,j . (4)

Figure 1. Left: The original graph to-be colored. Right: The
qubit-layout encoding the problem. Each vertex v is repre-
sented by  qubits xv,c for c = 1, . . .  representing its  pos-
sible colors. The extended graph construction can be thought
of taking the graph represented in its natural euclidean space
and then augmenting that space with another dimension and
replicating the graph  times for each of the colors. The phase
separation Hamiltonian are composed of two-qubit operations
corresponding to edges on each surface, and the mixing oper-
ation are among the qubits in the augmented dimension.

The approximation ratio we will adopt in the following
work is the ratio of the expectation value of the cost
Hamiltonian, projected onto the feasible subspace, to the
true maximal number of correctly colored edges:

r =
hP

feas

HCPfeas

i
C

max

, (5)

where P
feas

is the projection operator onto the feasible
subspace, and C

max

is the number of edges in the true
max--colorable subgraph. The numerator in Eq. (5)
is equivalent to the average number of properly-colored
edges measured upon measurement, with the unfeasible
output valued zero.

A. Adding penalty in the phase separating
Hamiltonian

The common practice for incorporate constraints is to
add a penalty term to the cost function. For the one-
hot-encoded problem we define a quadratic penalty to
penalize the case that a node is assigned no color or mul-
tiple colors

f
pen

=
X

v

(1 �
X

j=1

xv,j)
2 (6)

which, up to a constant, corresponds to the penalty
Hamiltonian,

H
pen

=
1

2

X

v

⇣
(2 � )

X

j

�z
v,j +

X

j<j0

�z
v,j�

z
v,j0

⌘
(7)

that increases the energy of all states outside the sub-
space. The phase-separating Hamiltonian becomes a
weighted sum of the cost and the penalty Hamiltonians

H
PS

= H 0
C � ↵H

pen

(8)
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(a) (b)

Figure 3. Numerical results for level 1 QAOA on the problem
of 3-coloring of a triangle graph. (a) using X mixer along
with phase-separating Hamiltonian, Eq. (8) where the penalty
weight is taken to be the numerically determined optimal
value ↵⇤ = 1.7. (b) using the XY mixer with W-state be-
ing the initial state.

the Envelope graph is the smallest hard-to-color graph
for the largest-first(LF) sequential method. Note that
these classical algorithms are aiming to compute the
chromatic number, while in this paper we focus on find-
ing the maximal colorable subgraph. Although finding
the max-colorable subgraph could serve as a subroutine
for determining chromatic numbers, the chromatic num-
ber can also be directly attacked by QAOA using a much
more complex mixer.[2] Nevertheless we are not aiming
at doing side-by-side comparison of quantum and classi-
cal algorithms, and will use these small graphs only as a
proof-of-principle demonstration of the QAOA with XY
mixers.

What graphs to color on NISQ era hardware? 

• For a classical algorithm, there is a concept of 
smallest slightly-hard-to-color graph:  applying the algorithm will sometimes 
yield the optimal solution
&
smallest hard-to-color graph: applying the algorithm never yields the optimal 
solution

• Examples

Envelope Prism

Small & Hard graphs

Figure 4. The two small and hard-to-color graphs: Envelope
and Prism. A valid 3-coloring is shown on each graph.

1. Performance of QAOA with the simultaneous ring mixer

With the simultaneous ring mixer, Figure. 5 shows
the results for QAOA levels 1 to 6. For each level, the
W-state is used as initial state, and stochastic search
(basin-hopping with BFGS) is performed to optimize the
expected value of the cost Hamiltonian over the angle
sets. The approximation ratio corresponding to the op-
timal expectation value is plotted as filled circles. Even
at level one, the approximation ratio takes a high value
0.8, and this value quickly approaches 1 as the level in-

creases. Furthermore, for each level, we computed the
probability of getting the actual optimal solution (a valid
3-coloring) upon measurement. At level one, this proba-
bility is slightly lower than 0.2, and quickly goes above 0.6
at level-3, which implies that repeating the experiment
3 times, one will find a valid coloring with probability
> 0.9.

Figure 5. The Prism graph. Dots are approximation ratios
and crosses are the expected probability of getting the opti-
mal coloring. For each QAOA level, results are shown at the
(sub)optimal angles resulted from a basin-hopping search.

2. E↵ect of initial states

The W-state – as both an even superposition of all fea-
sible classical states, and the ground state of the simul-
taneous ring mixer – is a natural candidate for the initial
state for QAOA. It involves multiple two-qubit gates to
prepare. An easier-to-prepare state for each vertex can
be defined via a randomly-assigned coloring (feasible but
not necessarily optimal), | Ci, i.e., a randomly drawn bit
string of Hamming weight one. Preparing such a state
involves only n single-qubit gates.

We study both initial states for the prism graph with
simultaneous ring mixer. For level-1 QAOA, the best
achievable optimization ratio (optimized over all angle
sets (�, �)) for W-state is higher than the classical Ham-
ming weight 1 state | iC . Notice that for | iC , the
phase-separating unitary commutes with the density ma-
trix of the state, hence has no e↵ect to the state evolu-
tion. As a result, the whole circuit for level-1 QAOA
is equivalent to applying the mixing unitary followed by
measurement. We further simulated higher levels, and in
Figure. 6 show the performance of QAOA with the W-
state versus a classical state as initial state. We found
that with the classical initial state, the performance of
QAOA is significantly lower than using the W-state as

For combinatorial optimization: High mean often accompanies high typical value



Choice of initial states

Classical initial state: easy to generate 
vs 

W-state: Better performance
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Figure 6. The Prism graph, the expected value of QAOA op-
timized over the angle sets. Triangles show the results with
W-state as initial states. Circles show the results with a fea-
sible classical initial state, averaged over the set of all feasible
classical states, the error bar is the standard deviation. For
each initial state, optimization over angles are derived from a
basin-hopping search.

initial state. Even at level 10, rclassical is still lower than
rW for level-1. Moreover, the approximation ratio with
classical initial state shows a tendency toward satura-
tion around level 10 – this could either be the nature
of the algorithm, or due to increasing di�culty in find-
ing the global optimum in the parameter subspace as the
level increases, which poses another practical considera-
tion for application. (Note that due to the optimization
over parameter space for each initial state, the average
over classical initial state is not equivalent to prepare the
initial state in a mixed state for the ensemble).

Because our simulation is noise-free, due to ergodicity,
in the limit of p ! 1 the optimal performance should
be independent of the initial state. But for practical
implementation on a near-term hardware where noises
accumulates fast with circuit depth, such medium-level
QAOA behavior is of high relevance. In Appendix C we
survey methods to generate quantum circuits for prepar-
ing W-states. It is shown that with certain methods it
can be generated with O() CNOT gates. The over-
all performance of QAOA will be a tradeo↵ between the
extra e↵ort in preparing W-state and the damage that
comes with circuit depth.

C. Benchmarking graph sets

To better understand the behavior of these QAOA
graph-coloring algorithms, we make use of the sets of all

-chromatic graphs of size n as the benchmarking sets
for the XY mixers under consideration. See Table II for
the number of instances in each benchmarking set.

� n num. graphs

3 5 12
3 6 64
3 7 475
4 6 26
4 7 282
5 7 46
6 7 5

n  num. graphs

4 4 6
4 6 6
4 8 6

Table II. Left: Benchmarking graph sets: each row indicates
all �-chromatic graphs of size n, and we solve the problem
of -coloring of such graphs choosing  = �. Right: Bench-
marking graph sets II for examining the simultaneous vs par-
titioned ring mixers on di↵erent ring sizes: Each row indicates
all connected graphs of size n, and we solve the problem of
-coloring of such graphs. Because the total number of qubits
is n, which is the limiting factor to the simulation, we limit
to small n to see  varying up to 8.
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Figure 7. QAOA with simultaneous mixers. Performance
comparison between ring and complete-graph mixers applied
to the same graph coloring problems. The axes show approx-
imation ratio achieved using the labeled mixer type. Scat-
ter plot shows the results for 4-coloring of all connected
chromatic-4 graphs of size n = 7. In (b), for better visi-
bility, an outlier data point at (ring = 0.95, complete = 0.9)
is not shown in the plot.

1. Approximation ratio and probability-to-optimal-solution

Using W -state as the initial state, for simultaneous
ring and complete-graph mixers, the mean and median
of the approximation ratio as well as the probability-to-
optimal-solution is evaluated across problem sets.

The following observations have been made on the typ-
ical performance for each problem set.
a. Consistent performance over instances. For all

problem sets, the approximation ratio and the
probability-of-optimal-solution curves as a function of

Generalized W-state: For any number of qubits
superposition of classical states of Hamming-weight 1.  

Eigen-state of the XY mixer, an uniform superposition of all feasible classical states  

Classical initial states: random-coloring of the graph Easier to prepare: 
n single-qubit gates



Parameter setting

Our Algorithm

The building block of our algorithm is

W (�) = e

�i⇡B/n
e

i�C
e

�i⇡B/n
e

�i�C ,

where � 2 (0,⇡] is a free parameter. The unitary W (�) is repeatedly
applied to the initial state | s i for O(

p
N) times.

W (�)

|+ i

e�i�C

e�i⇡X/n

ei�C

e�i⇡X/n · · ·

|+ i e�i⇡X/n e�i⇡X/n · · ·
...

...
...

...

|+ i e�i⇡X/n e�i⇡X/n · · ·
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QAOA for Grover’s problem 

QAOA Circuit for Grover’s Problem

Given an oracle Hamiltonian that encodes an unknown string u,1

Cu = �|u ihu | ,

the aim is to find out u using as few as possible queries of Cu .

The output of a QAOA circuit for Grover’s problem is

| 
out

i = e

�i�
p

B

e

�i�
p

Cu · · · e�i�1B
e

�i�1Cu | s i .

We find a set of parameters � and �, such that

hu | 
out

i ' 1/
p
2 , p ' ⇡

4
p
2

p
N ,

achieving a near-optimal query complexity.

1
The string u can be replaced by 0 = (0, 0, . . . , 0) as long as we replace Cu with C0.
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Reproduces the √N quantum speedup

QAOA for AF ring (MaxCut on a ring)

z

x

2:
N

• Anti-Ferromagnetic Chain: 

3

Theorem 1. For QAOA with p = 1, for each edge huvi,

hC
uv

i(d, e, f) =
1

2
+

1

4
sin 4� sin �(cosd � + cose�)

�1

4
sin2 � cosd+e�2f �(1� cosf 2�)(9)

where d + 1 and e + 1 are the degrees of vertices u and
v, respectively, and f is the number of triangles in the
graph containing edge huvi .

Here we showed that for p = 1 the expectation
value of any edge hC

uv

i depends only on the parameters
(d, e, f). Then the overall expectation value F (�,�) =P

(d,e,f)

hC
uv

i(d, e, f)�(d, e, f) where the summation is
taken over distinct subgraphs (d, e, f) and �(d, e, f) is the
multiplicity of the subgraph (d, e, f), i.e. the number of
times the subgraph appears in G. Thus for an arbitrary
graph F (�,�) may be e�ciently computed classically.

For a triangle-free graph of fixed vertex degree d + 1,
i.e., f = 0 in Eq. (9). The expectation value reduces to

F (�,�) =
|E|
2

+
|E|
2

sin 4� sin � cosd �. (10)

with optimal value

F ⇤ = max
�,�

F (�,�) =
|E|
2

+
|E|
2

1p
d

⇣ d

D

⌘
D/2

(11)

For any such graph, one optimal pair of angles is (�, �) =
(⇡/8, arctan(1/

p
d)). MaxCut in the case in which all

vertices have degree 2, so the graph is a ring, is called the
Ring of Disagrees. In this case, maximizing (10) yields
the optimization ratio 0.75 at (�, �) = (⇡/8,⇡/4), and
for d = 2, the ratio is 0.692, both reproducing the results
in [3].

For an arbitrary triangle-free graph with maximum
vertex degree D, the right-hand side of Eq. (11) gives
a lower bound to F ⇤. We see that even for p = 1, QAOA
always beats random guessing.

It is straightforward to extend the analysis to QAOA of
higher levels. The number of such terms quickly becomes
prohibitive for direct calculation, however; many more
non-commuting terms coming from the U

C

’s and U
B

’s
must be retained and carried through the calculation.
The expectation value of a given edge will also depend on
its local graph topology (within p hops), which becomes
di�cult to succinctly characterize as p increases.

IV. ANALYSIS OF THE PROBLEM OF RING
OF DISAGREES (ANTI-FERROMAGNETIC

CHAIN)

We now study in detail QAOA for the ring of disagrees,
where the symmetry and simplicity of the problem means
that analysis can be done for QAOA of arbitrary level p.
Numerical results for small p, and a conjecture for the
approximation ratio for arbitrary p were given in Ref. [3].

A. Formulation of the problem

The Hamiltonian for MaxCut on a ring, or the Ring of
Disagrees, with N vertices is H̃

C

= 1

2

P
N

j=1

(1� �z

j

�z

j+1

)
where �z

N+1

= �z

1

. For convenience, we consider only

even N , in which case the ground state of H̃
C

is triv-
ial with every pair of neighboring spins aligned in anti-
parallel fashion, corresponding to F

opt

= �N .
To simplify the derivation, and without losing gener-

ality, we drop the constant and rescale H̃
C

to be

H
C

=
X
j

�z

j

�z

j+1

(12)

which is used in the evolution operator Eq. (2). Since
the rescaling dropped a negative sign, the maximization
problem becomes a minimization problem. The initial
state of the system is prepared as Eq. (4), and the algo-
rithm follows the evolution Eq. (5).
The relation between angles, expectation value used in

this paper and the ones in Ref. [3] (notations with tilde)
is � = ��̃/2, � = �̃ and F̃ (�̃, ˜�) =

�
N � F (�,�)

�
/2

B. Fermionic representation

We show that using a Fermionic representation, the
problem reduces to optimal quantum control of an en-
semble of independent spins (spin-1/2), significantly sim-
plifying the analysis.
We apply the Jordan-Wigner transformation [1, 8],

a
j

=
1

2
(�1)j�1

�
�y

j

+ i�z

j

� j�1Y
k=1

�x

k

(13)

a†
j

=
1

2
(�1)j�1

�
�y

j

� i�z

j

� j�1Y
k=1

�x

k

(14)

where a
j

, a†
j

obey the fermionic canonical commutation
relations. Accordingly,

H
C

=
N�1X
j=1

a†
j

a
j+1

+ a
j

a
j+1

� (a†
N

a
1

+ a
N

a
1

)G+ h.c.

(15)

where we introduce the gauge operator G =
exp[i⇡

P
N

l=1

a†
l

a
l

] = (�1)N
Q

N

j=1

�x

j

. In the current
(standard) QAOA settings, for even N , the initial state
is an eigenstate of G with eigenvalue 1. The operator
G is a constant of motion since it commutes with both
H

B

and H
C

, so the value of G remains 1 throughout the
evolution. The sign of the j = N terms in H

C

there-
fore are di↵erent from the others. We further introduce
a phase factor to unify the expression, b

j

= a
j

e�ij⇡/N .

• Analysis: Jordan-Wigner transformation 
for 1D spin chain with n.n. couplings

2-axis control of 
N/2 independent 
spins with 
collective angles

coupled spin 
chain of size N

. . .

k̂z

x

γ
β

γ

[Wang, Hadfield, Jiang, Rieffel, QAOA for 
MaxCut: a fermonic review, PRA 2018]

[Jiang, Rieffel, Wang, Near-optimal quantum 
circuit for Grover's unstructured search 

using a transverse field, PRA 2017]

Deterministic parameters:  
beta=pi/n, gamma=arbitrary



Rugged landscape — stochastic optimizing is needed

Quantum control landscape: local minima; barren plateau



Summary

• We outlined important aspects of benchmarking quantum heuristics

• Using QAOA with XY mixer as an example, we demonstrated that influences to 
algorithm performance could come from

• Design principle

— Choice of “Cost function”: challenges the guidance role of energy in QAOA

— Choice of Mixers: contains search in feasible subspace satisfying constraints

— Choice of initial state: tradeoff between good (noise-free) performance and 
complexity of state-preparation

• Implementation on hardware

• — Circuit-depth for XY gates: can be efficiently implemented on hardware: from 
all-to-all to a chain connectivity

• Parameter setting and Quantum control landscape

From QAOA to QAOA: [Hadfield, Wang, O'Gorman, 
Rieffel, Venturelli, Biswas, Algorithms 2019] 

QAOA for MaxCut: a fermonic view,[Wang, 
Hadfield, Jiang, Rieffel, PRA 2018]

QAOA for Grover: [Jiang, Rieffel, Wang, PRA 2017]XY mixers for QAOA: [Wang, Rubin, 
Dominy, Rieffel, arXiv:1904.09314]



Thank You!


