

NASA SPACE TECHNOLOGY MISSION DIRECTORATE EARLY CAREER INITIATIVE

# PTERODACTYL: AN UNCOUPLED RANGE CONTROL APPROACH TO FULLY NUMERICAL PREDICTOR-CORRECTOR ENTRY GUIDANCE

#### Breanna Johnson

NASA Johnson Space Center Flight Mechanics and Trajectory Design Branch EG5

# What is Pterodactyl?

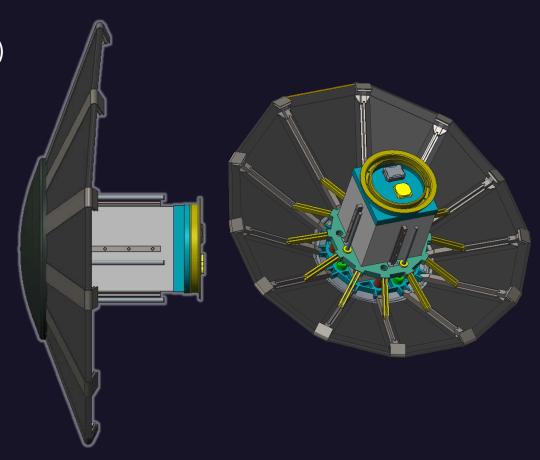
A design, build, and test capability for finding optimal, scalable Guidance & Control (G&C) solutions for Deployable Entry Vehicles (DEVs) to enable precision targeting

### MOTIVATION

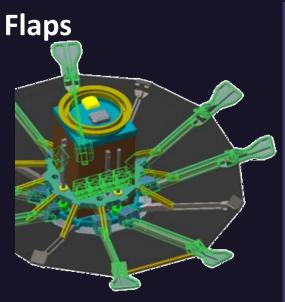
Feasibility study such that the solution closes

- Targeting Performance (G&C)
- Packaging and Structural Analysis

Selected Lunar Return mission parameters to stress design for precision targeting and future scalability







## **BASELINE MODELS AND PARAMETERS**

Baseline vehicle (Aeroshell is fixed)
Lifting Nano-ADEPT (LNA)
1 m diameter
Mass = 54 kg

<u>Loading Constraints</u>
Heating Rate ≤ 250 W/cm<sup>2</sup>
G-load ≤ 15g's



## **CONTROL SYSTEM TRADE STUDY**





Independent

Moveable Masses

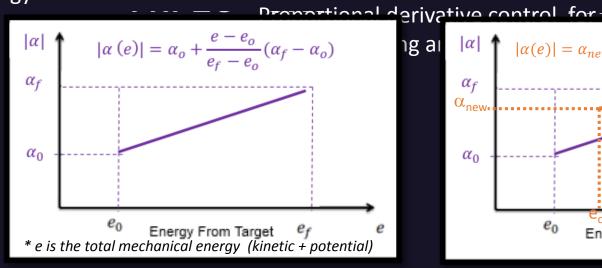
# Reaction Control System (RCS)



### **MODELS AND SIMULATIONS**

| Model                           | New Development                                                                                                                                                                       | Purpose                                                                                                             |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Aerodynamics & Aeroheating      | Multi-flap modeling to generate database of forces and moments @ specific flow conditions and attitudes                                                                               | Lift Side Force $\alpha < 0$                                                                                        |
| Guidance Algorithm              | Develop methodology for identifying $\alpha/\beta$ control $ \begin{array}{c} \text{Precision targeting by reducing down range and cross range errors} \\ \text{errors} \end{array} $ |                                                                                                                     |
| Control Algorithm               | Identify flap deflections to track guidance commands                                                                                                                                  | <ul><li>- 6DOF simulation development</li><li>- Define control requirements</li><li>for mechanical design</li></ul> |
| Mechanical Design               | Identify mechanical components to achieve flap angles, rates, and acceleration                                                                                                        | Ensure hardware integration feasibility and stowing capability                                                      |
| TPS/Structures<br>Mass Estimate | Flaps mass estimation model TPS<br>of thickness and mass<br>Pterodactyl Project, NASA STMD                                                                                            | TPS estimation key to estimation flap control system mass                                                           |

#### **NEW TARGETING APPROACH**


**Uncoupled Range Control (URC)** - Integrated  $\alpha/\beta$  control for targeting in the Fully Numerical Predictor-corrector Entry Guidance (FNPEG<sup>1</sup>)

WHY? It is robust and adaptable to different configurations

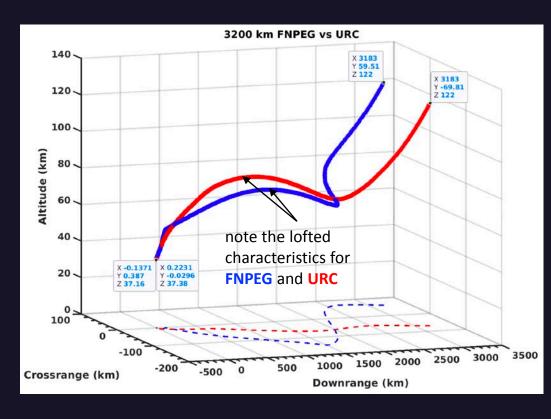
#### α-command method

INITIAL GUESS – Linear function of mechanical firenergy  $\beta$ —command method

TARGETING – corrects down range error by finding a modified linear profile



Ig al  $|\alpha|$   $|\alpha(e)| = \alpha_{new} + \frac{e - e_{current}}{e_f - e_{current}} (\alpha_f - \alpha_{new})$   $\alpha_f \quad \alpha_{new} \quad \alpha_0 \quad e_{current} \quad \alpha$ 

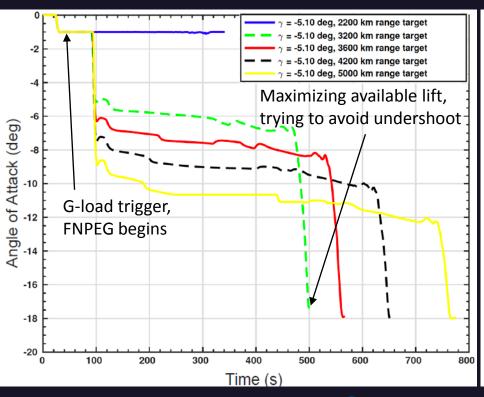

[1]Lu, P. Entry Guidance: A Unified Method. Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 713-728.

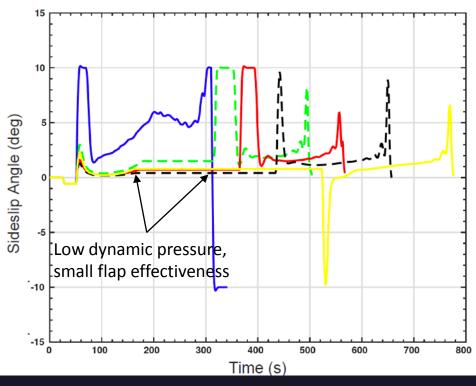
## **FNPEG URC PROFILE**

This is an example trajectory path for an FNPEG-URC flaps controlled LNA, beginning 3200 km away from the target

| <b>Entry Interface (EI) Parameters</b> | Value | Units |
|----------------------------------------|-------|-------|
| Altitude                               | 122   | km    |
| Latitude                               | -4.7  | deg   |
| Longitude                              | -112  | deg   |
| Relative Velocity                      | 11    | km/s  |
| Relative Azimuth                       | 0     | deg   |
| Relative Flight Path Angle             | -5.1  | deg   |

| Guidance Target Parameters | Value | Units |
|----------------------------|-------|-------|
| Altitude Target            | 31    | km    |
| Latitude Target            | 40    | deg   |
| Longitude Target           | -112  | deg   |
| Relative Velocity Target   | 0.69  | km/s  |





<sup>\*</sup>Comparable profiles between the two algorithms are observed, ≤5km miss distance is desired

## **URC TARGETING PERFORMANCE**

#### These guidance profiles resulted in:

- Trajectories that did not exceed the heating rate and g-load constraints
- Guidance solutions that typically become more lift up to protect for trajectory dispersions near the end of entry
- Miss distance is less than 0.5km for four of the five cases shown





## URC TARGETING PERFORMANCE

- Monte Carlos (MCs) were run with typical dispersions for a lunar entry mission
- All runs for example FNPEG-URC case satisfy heating (<250 W/cm²), g-load (<15 g's), and miss distance (<5 km) desired limits</li>

|                       | Standard Deviation |
|-----------------------|--------------------|
| Monte Carlo Variables | σ                  |
| Initial Velocity      | <u>+</u> 3.33 m/s  |
| Initial FPA           | <u>+</u> 0.03 °    |
| Initial Azimuth       | ±0.1°              |
| Initial Lat           | ±0.1°              |
| Initial Lon           | ±0.1°              |
| Initial Altitude      | <u>±</u> 100 m     |
| Initial Mass          | <u>+</u> 1% kg     |

| Monte Carlo Variables | Multiplier |
|-----------------------|------------|
| EARTH GRAM            | N/A        |
| CD, CL, CS            | 0.9-1.1    |

# **EXAMPLE PERFORMANCE FOR CANDIDATE CONTROL SYSTEMS**

Dedicated aerodynamic, aerothermal, structural, and packaging analyses defined operational control regimes to reach the UTTR target [Lat = 40°, Lon = -112.1°]

- RCS Performance Statistics (FNPEG):
  - $\alpha_{trim}$  = -16.6°
  - $L/D_{trim} = 0.27$
  - $\beta_{ball\ coef}$  = 54 kg/m<sup>2</sup>

| 1000-case MC   | Mean                  | Max                   |  |
|----------------|-----------------------|-----------------------|--|
| Miss Distance  | 0.42 km               | 1.30 km               |  |
| Peak Heat Rate | 196 W/cm <sup>2</sup> | 211 W/cm <sup>2</sup> |  |
| Peak G-load    | 5.8 g                 | 6.5 g                 |  |

 $\gamma_{EI}$ =-5.2°, Range to target = 3400 km

Mass Movement Performance Statistics (URC):

- 
$$[\alpha_{range}]$$
,  $[\beta_{range}]$  = [-9°,-17°],  $[\pm 10$ °]

-  $L/D_{range}$  = [0.15, 0.29]

 $- [\beta_{ball\ coef}] = 64\ kg/m^2$ 

| 1000-case MC   | Mean                  | Max                   |
|----------------|-----------------------|-----------------------|
| Miss Distance  | 0.154 km              | 0.426 km              |
| Peak Heat Rate | 232 W/cm <sup>2</sup> | 245 W/cm <sup>2</sup> |
| Peak G-load    | 7.7 g                 | 8.1 g                 |

 $\gamma_{EI}$ =-5.8°, Range to target = 4200 km

**Flaps** Performance Statistics (**URC**):

- 
$$[\alpha_{range}]$$
,  $[\beta_{range}]$  = [-1°,-18°],  $[\pm 10$ °]

-  $L/D_{range}$  = [0.04, 0.30]

 $- [\beta_{ball\ coef}] = 58\ kg/m^2$ 

| 1000-case MC   | Mean              | Max                   |
|----------------|-------------------|-----------------------|
| Miss Distance  | 0.42 km           | 0.87 km               |
| Peak Heat Rate | W/cm <sup>2</sup> | 217 W/cm <sup>2</sup> |
| Peak G-load    | g                 | 7.49 g                |

 $\gamma_{EI}$ =-5.2°, Range to target = 3400 km

# GUIDANCE PERFORMANCE FOR CANDIDATE CONTROL SYSTEMS

Dedicated aerodynamic, aerothermal, structural, and packaging analyses defined operational control regimes to reach the UTTR target [Lat = 40°, Lon = -112.1°]

- **Example** Performance Statistics (**FNPEG**):
  - $\alpha_{trim}$  = -16.9°
  - $L/D_{trim} = 0.27$
  - $\beta_{ball\ coef}$  = 58 kg/m<sup>2</sup>

| 1000-case MC   | Mean                  | Max                   |
|----------------|-----------------------|-----------------------|
| Miss Distance  | 0.43 km               | 2.4 km                |
| Peak Heat Rate | 203 W/cm <sup>2</sup> | 218 W/cm <sup>2</sup> |
| Peak G-load    | 5.7 g                 | 6.5 g                 |

 $\gamma_{FI}$ =-5.2°, Range to target = 3400 km

- Altered Performance Statistics (FNPEG):
  - $-\alpha_{trim} = -14^\circ$
  - $L/D_{trim} = 0.23$
  - $\beta_{ball\ coef}$  = 58 kg/m<sup>2</sup>

| 1000-case MC   | Mean                  | Max                   |
|----------------|-----------------------|-----------------------|
| Miss Distance  | 0.44 km               | 1.2 km                |
| Peak Heat Rate | 198 W/cm <sup>2</sup> | 212 W/cm <sup>2</sup> |
| Peak G-load    | 5.8 g                 | 6.4 g                 |

 $\gamma_{EI}$ =-5.2°, Range to target = 3400 km

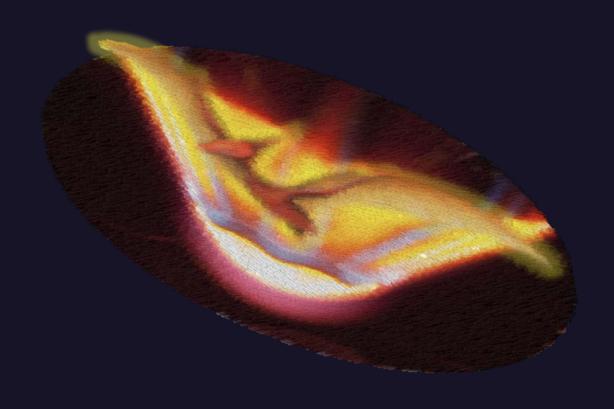
- Example Performance Statistics (URC):
  - $\left[\alpha_{range}\right]$ ,  $\left[\beta_{range}\right]$  =  $\left[-9^{\circ}$ ,  $-17^{\circ}\right]$ ,  $\left[\pm10^{\circ}\right]$
  - $L/D_{range}$  = [0.15, 0.29]
  - $[\beta_{ball\ coef}] = 64 \text{ kg/m}^2$

| 1000-case MC   | Mean                  | Max                   |  |
|----------------|-----------------------|-----------------------|--|
| Miss Distance  | 0.154 km              | 0.426 km              |  |
| Peak Heat Rate | 232 W/cm <sup>2</sup> | 245 W/cm <sup>2</sup> |  |
| Peak G-load    | 7.7 g                 | 8.1 g                 |  |

 $\gamma_{EI}$ =-5.8°, Range to target = 4200 km

| <ul><li>Altered</li></ul> | Performance | <b>Statistics</b> | (URC) | ): |
|---------------------------|-------------|-------------------|-------|----|
|---------------------------|-------------|-------------------|-------|----|

- $[\alpha_{range}]$ ,  $[\beta_{range}]$  =  $[-9^{\circ}, -17^{\circ}]$ ,  $[\pm 4.5^{\circ}]$
- $L/D_{range}$  = [0.15, 0.29]
- $[\beta_{ball\ coef}] = 64 \text{ kg/m}^2$

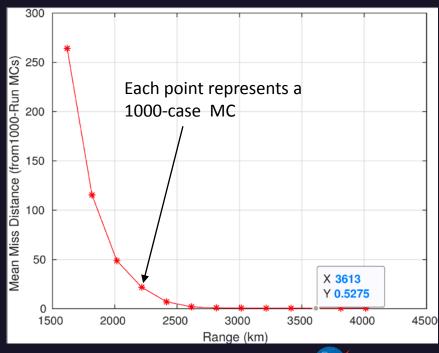

| 1000-case MC   | Mean                  | Max                   |
|----------------|-----------------------|-----------------------|
| Miss Distance  | 0.76 km               | 3.58 km               |
| Peak Heat Rate | 243 W/cm <sup>2</sup> | 260 W/cm <sup>2</sup> |
| Peak G-load    | 8.12 g                | 8.81 g                |

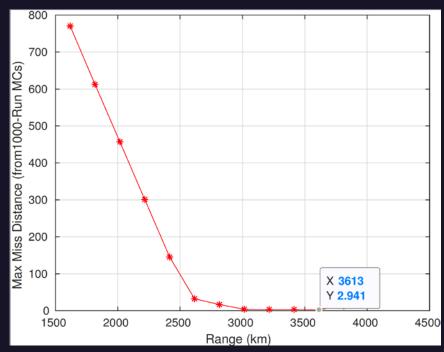
 $\gamma_{EI}$ =-5.8°, Range to target = 4200 km

#### WHAT HAVE WE LEARNED?

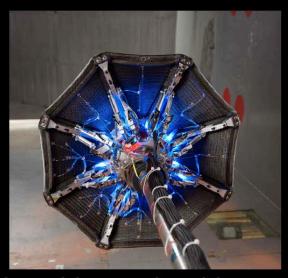
- Feasible guidance solutions exist for DEVs
- FNPEG's unified algorithmic principles allow for high flexibility with little/no tuning for various regimes
- A new guidance method FNPEG-URC was successfully created to decouple downrange and crossrange control
- Regions of viable EI states are identified such that each control system may robustly reach the target precisely (<5 km)</li>
- Success of FNPEG-URC driven designs (Mass Movement, Flaps) is strongly driven by operational angle of attack & sideslip range

# **QUESTIONS?**





## **BACK UP SLIDES**

## **URC TARGETING PERFORMANCE**

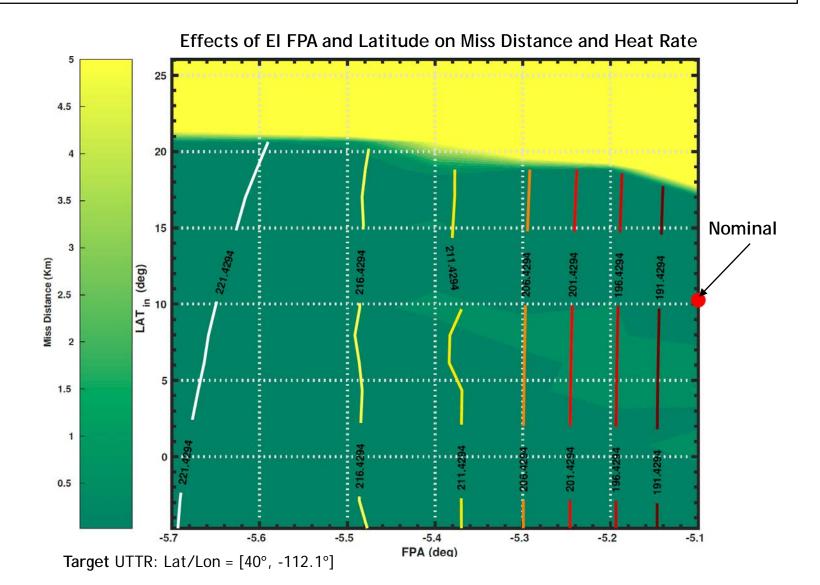

- Monte Carlos (MCs) were run with typical dispersions for a lunar entry mission
- All runs for example FNPEG-URC case satisfy heating (<250 W/cm²), g-load (<15 g's), and miss distance (<5 km) desired limits

|                       | Standard           |
|-----------------------|--------------------|
| Monte Carlo Variables | Deviation $\sigma$ |
| Initial Velocity      | <u>+</u> 3.33 m/s  |
| Initial FPA           | <u>+</u> 0.03°     |
| Initial Azimuth       | ±0.1°              |
| Initial Lat           | <u>±</u> 0.1°      |
| Initial Lon           | <u>±</u> 0.1°      |
| Initial Altitude      | ±100 m             |
| Initial Mass          | <u>+</u> 1% kg     |
|                       |                    |
| Monte Carlo Variables | Multiplier         |
| EARTH GRAM iopr       | N/A                |
| CD. CL. CS            | 0.9-1.1            |

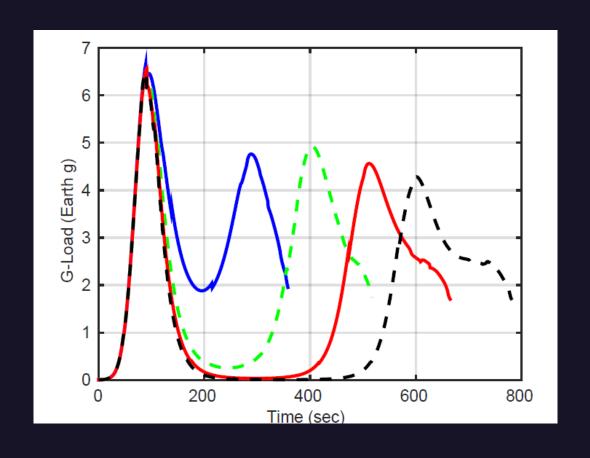




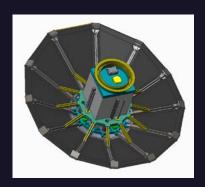
# Large to Small Mass Missions are driving the development of DEVs!




Adaptable, Deployable Entry Placement Technology (ADEPT)

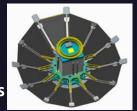



Hypersonic Inflatable
Aerodynamic Decelerator (HIAD)


#### **EI STUDY: IN SEARCH OF CONVERGENCE**



# **FNPEG URC G-LOAD CURVES**




## **Pterodactyl Design Process Overview**



**Lifting Nano-ADEPT** Asymmetric, 1+ meter diameter

**Select Optimal** Design **MDAO output, SMEs** 



**Identify Potential Control Systems** Tabs, RCS, etc.



**CAD Models** 

**Aerodynamics Aerothermodynamics** 

**Guidance & Control** 

Structures Analysis

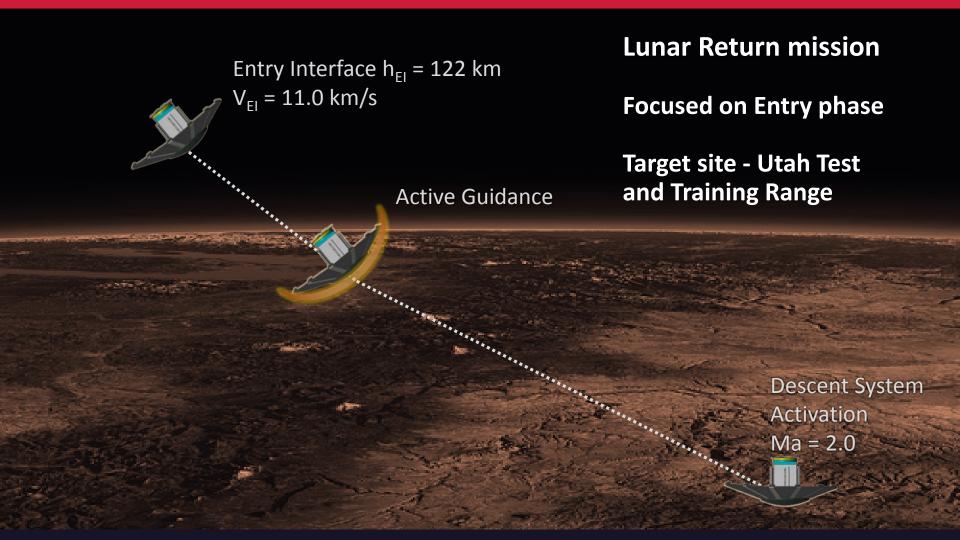
**TPS Sizing** 

**Develop Vehicle and Control System Simulations Varied Fidelity** 

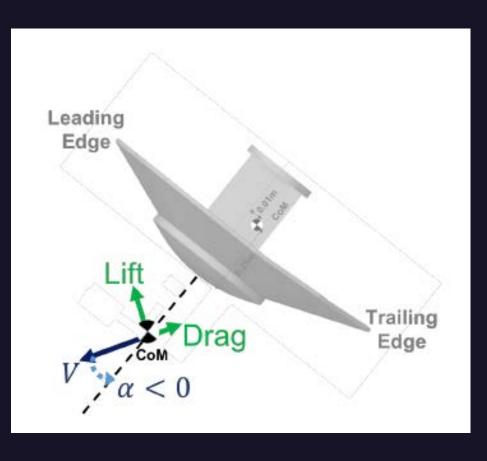


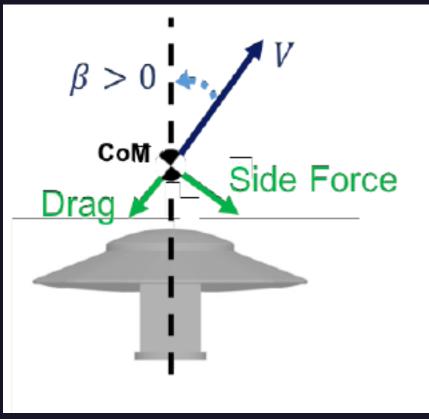
\*COBRA-Pt **Optimizes control** system mass and target ellipse

Integrate Models into MDAO Framework


Multi-disciplinary, Design, Analysis and Optimization 20

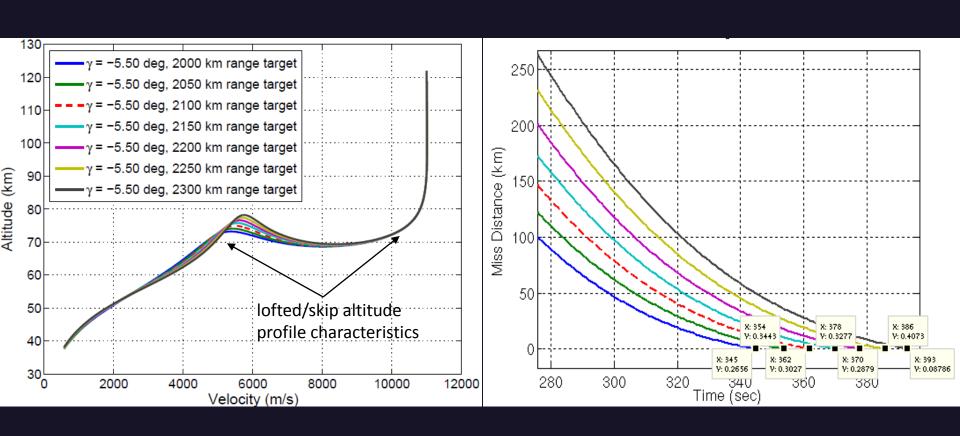
\*Garcia et al., AIAA 2010-5052





### **BASELINE MODELS AND PARAMETERS**

(CONT'D)



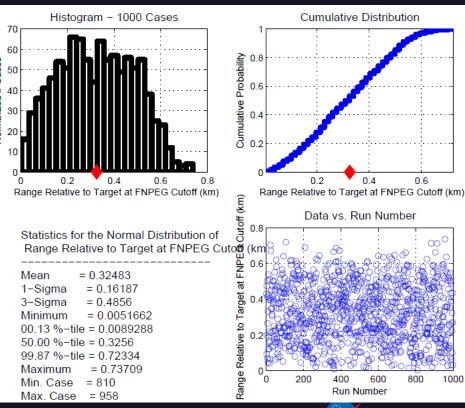

## FLAP CONFIGURATION OVERVIEW

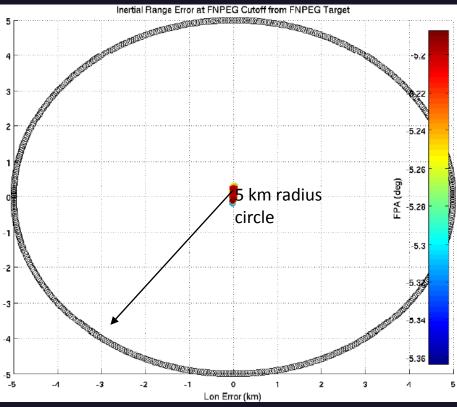




# α-β GUIDANCE

 Achieved precision targeting for downranges of 2000 to 2300 km, all satisfying the desired footprint (in the sky) of 5 km radius



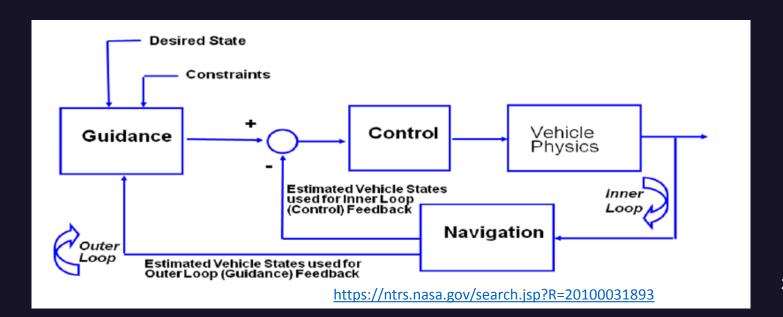


# α-β GUIDANCE

| Monte Carlo Variables | Multiplier |
|-----------------------|------------|
| GRAM                  | N/A        |
| CD, CL, CS            | 0.9-1.1    |

|                       | Standard           |
|-----------------------|--------------------|
| Monte Carlo Variables | Deviation $\sigma$ |
| Initial Velocity      | <u>+</u> 3.33 m/s  |
| Initial FPA           | ±0.03°             |
| Initial Azimuth       | ±0.1°              |
| Initial Lat           | ±0.1°              |
| Initial Lon           | ±0.1°              |
| Initial Altitude      | ±100 m             |
| Initial Mass          | $\pm 0.4$ kg       |

- Monte Carlos (MCs) were run for the FNPEG and FNPEG URC trajectories, with dispersions consistent with a typical lunar entry mission
- All runs for baseline satisfy heating, g-load, and miss distance constraints
- Multiple MCs were run for different ranges to converge on best input entry interface (EI)

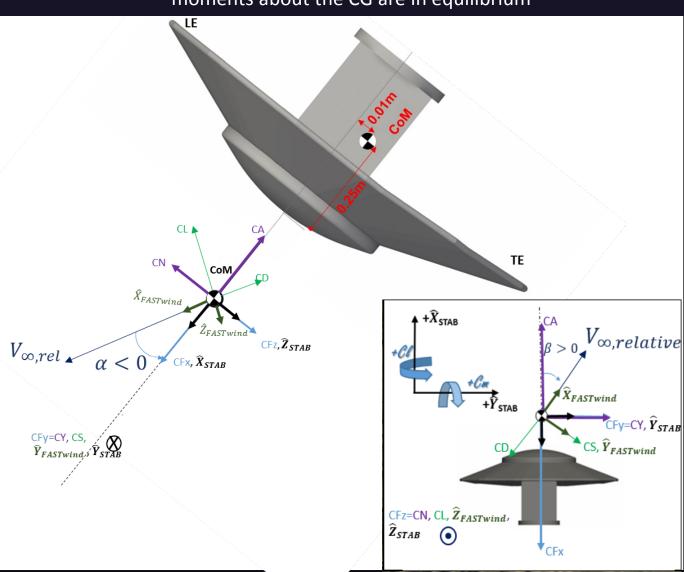





#### **GUIDANCE WORK COMPLETED**

- Investigated entry corridor characteristics for non-guided constant bank angle trajectories to extract notional FPA, g-load, heating, range envelope (for Con Ops & Guidance inputs)
- Delivered FNPEG trajectory with bank-only modulated profile
  - Cases included: Mars, LEO return, Lunar return
- Converted FNPEG to FNPEG URC and re-derived Equations of Motion for FNPEG to determine bank angle only vs. angle-of-attack (alpha) & sideslip angle (beta) assumptions
- Delivered 3DoF Monte Carlo results from FNPEG and FNPEG URC (single and range of MCs)
- Completed an angle rate/acceleration limit study to inform 6DoF work
- Created scripts to help auto generate inputs for the MDAO process
- Transferred FAST over to Ames' Pleiades supercomputer and worked to get compilation
- Found that alpha is a strong parameter to vary range, but may be more susceptible to aero errors than bank guidance

## GUIDANCE


- Guidance: determines a moving vehicle's current position/velocity/attitude state to a desired position/velocity/attitude state, while satisfying specified constraints such as fuel expenditure, safety, dynamic/thermal loading, and time criticality
- Navigation: determines the current dynamic state (position, velocity, attitude etc.) of a vehicle
  provided noisy sensor measurement data in a specified frame of reference
- Control: determines and applies the force and torque commands needed to utilize the chosen vehicle actuators to both stabilize the vehicle and achieve the provided guidance state, usually in a closed-loop manner

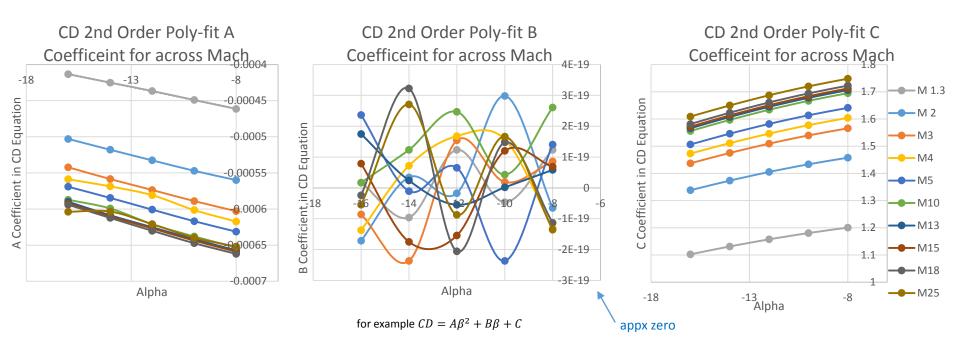


## **DYNAMICS**

- Lift defines the aerodynamic force perpendicular to the velocity vector
- Drag defines the aerodynamic force in the anti-velocity direction
- Trim defines the stability points where all aerodynamic moments about the CG are in equilibrium

| Example Variables Important for Guidance |                |  |
|------------------------------------------|----------------|--|
| Altitude                                 | r              |  |
| Velocity                                 | V              |  |
| Latitude                                 | $\theta_{Lat}$ |  |
| Longitude                                | $	heta_{Lon}$  |  |
| Flight Path Angle                        | γ              |  |
| Heading Angle                            | σ              |  |
| Bank Angle                               | φ              |  |
| Sideslip Angle                           | β              |  |
| Angle of Attack                          | α              |  |
| Lift                                     | L              |  |
| Drag                                     | D              |  |
| Density                                  | ρ              |  |
| Mass                                     | m              |  |
| Time                                     | t              |  |




#### HERITAGE

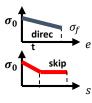
- First Generation Designed for low-lifting capsule vehicles in the Apollo program
  - Skip entry and final-direct entry ("Apollo entry guidance") phase
  - Flies trim alpha w/o modulation
  - Relies on sensitivity coefficients from linearized reference trajectory for predicted downrange error
  - Crossrange controlled with bank reversal logic that changes the sign when crossrange to landing exceeds a velocity-dependent deadband
- Second Generation Designed for the high L/D Space Shuttle
  - Compared to Apollo (low L/D) flight time and downrange traveled are much longer
  - Linearized gain scheduled tracking law for bank angle modulation is employed to follow the profile (similar bank reversal logic)
- Third Generation Depart from Apollo or Shuttle and rely more on predictor-corrector algorithms for real-time trajectory design and guidance solution
  - No reliance on pre-planned reference trajectory or tracking law
  - Primarily proposed for low lifting vehicles since satisfaction of the constraints is mainly through carefully chosen initial condition

#### Updated FNPEG to Include Side Force Contributions



- To reduce computational load, a polynomial fit + 2-step interpolation was used as an approximate to the true CD, CL, and CS coefficients
  - CD and CL required a second-order polynomial fit for each Mach
  - CS required linear polynomial fit
  - · Trends were difficult to quantify between alpha and beta leading to a two step interpolation method
- Coefficients were used to define equations useful for automatic lateral logic gain updates based on dynamic pressure  $(\bar{q})$




Breanna Johnson | EG5

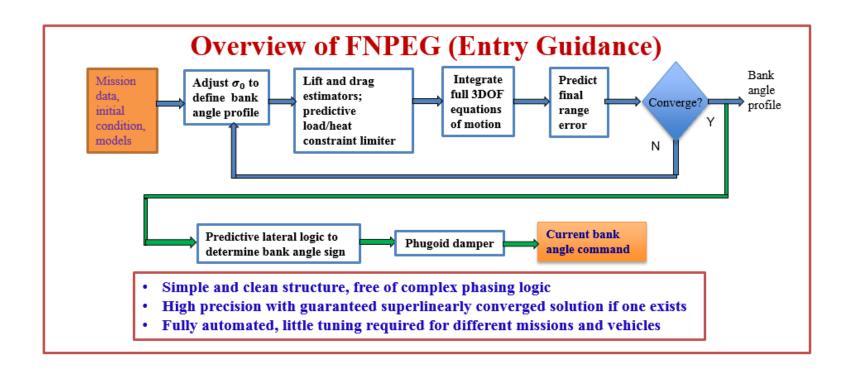
#### Introduction to FNPEG



#### Features

- FNPEG is a fully numerical predictor-corrector entry guidance algorithm capable of direct entry guidance and skip entry guidance
- At each guidance time step, FNPEG uses Newton-Raphson method within its' predictor-corrector to search for the bank angle command  $\sigma_0$  that creates a bank angle vs. energy linear profile, resulting in minimal miss distance, where energy is defined as:  $e = \frac{\mu}{2} \frac{V^2}{\Omega}$
- Inequality path constraint enforcement capability
  - g-Load, heating rate, dynamic pressure,...
  - Constraint enforcement does not interfere with guidance precision




- Deterministic lateral algorithm that allows the user to specify a desired number of bank ( $\sigma$ ) reversals
- Applicability to different vehicles with a wide range of L/D ratios, mission types, and initial conditions, without the need for redesign, tuning, or extensive adjustments to the algorithm
- A variation is available for optimal aerocapture guidance (FNPAG)

#### Status

- FNPEG tested and evaluated at JSC in Orion simulation environment; Compared favorably with Orion entry guidance algorithm PredGuid
- FNPAG was in an aerocapture fly-off at Langley in 2016, and extensively used at JSC in aerocapture parametric studies
- Reference: Lu, Brunner, Stachowiak, Mendeck, Tigges, Cerimele, "Verification of a Fully Numerical Predictor-Corrector Entry Guidance Algorithm", *Journal of Guidance, Control, and Dynamics*, Vol. 40, No. 2, 2017

#### Fully Numerical Predictor-Corrector Entry Guidance





Breanna Johnson | EG5 \*from Dr. Ping Lu

31

#### The case for FNPEG



- Unlike other guidance algorithms, FNPEG is a unified method based on the same algorithmic principles applicable to a wide range of vehicles (low to high L/D)
- It can also be applied to skip as well as direct entry for orbital and sub-orbital entry missions
- FNPEG has good convergence rates and can enforce complicated (quadratic) inequality heating and aerodynamic load constraints

$$\dot{Q} = k_Q \sqrt{\rho} V^{3.15} \leq \dot{Q}_{max}$$
  
 $a = \sqrt{L^2 + D^2} \leq a_{max}$ 
  
 $\bar{q} = (g_0 R_0 \rho V^2)/2 \leq \bar{q}_{max}$ 

#### Dynamic Equations of Motion Re-derivation in NED Frame



Re-derived compared to accepted text from N. Vinh), but should eventually include the side force contribution into the 3 dynamic equations of motion  $(\dot{v}, \dot{\psi}, \dot{V})$ , which was not included in Vinh and Lu's derivations. They usually aren't important to include for bank guidance where  $\beta$  & CS are assumed small.

$$\underline{\mathcal{F}}_{w}^{T}(\mathbf{D}_{w} + \mathbf{L}_{w}) = \underline{\mathcal{F}}_{w}^{T} \left( \begin{bmatrix} -D\\0\\0\\-L \end{bmatrix} + \begin{bmatrix} 0\\S\\0 \end{bmatrix} \right) + \begin{bmatrix} 0\\S\\0 \end{bmatrix} \right)$$
(53)

$$\underline{\mathcal{F}}_{f}^{T}(\mathbf{A}_{f} + \mathbf{T}_{f}) = \underline{\mathcal{F}}_{f}^{T}(\mathbf{D}_{f} + \mathbf{R}_{fw}\mathbf{L}_{w} + \mathbf{R}_{fw}\mathbf{S}_{w} + \mathbf{R}_{fb}\mathbf{T}_{b})$$
(55)

$$\underline{\mathcal{F}}_{f}^{T}(\mathbf{A}_{f} + \mathbf{T}_{f}) = \underline{\mathcal{F}}_{f}^{T} \begin{pmatrix} \begin{bmatrix} -D \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ Ls(\sigma) \\ -Lc(\sigma) \end{bmatrix} + \begin{bmatrix} 0 \\ Sc(\sigma) \\ Ss(\sigma) \end{bmatrix} + \begin{bmatrix} Tc(\alpha + \epsilon)c(\beta) \\ Ts(\alpha + \epsilon)s(\sigma) - Tc(\alpha + \epsilon)s(\beta)c(\sigma) \\ -Ts(\alpha + \epsilon)c(\sigma) - Tc(\alpha + \epsilon)s(\beta)s(\sigma) \end{bmatrix} \end{pmatrix} (56)$$

$$\mathcal{T} = Tc(\alpha + \epsilon)c(\beta) - D$$

$$\mathcal{S} = Tc(\alpha + \epsilon)s(\beta) - S$$

$$\mathcal{H} = Ts(\alpha + \epsilon) + L$$

Using Eqns 13 and 56 yield

$$\dot{\mathcal{V}} = \frac{1}{m} \mathcal{T} - gs(\gamma) + \omega^2 rc(\phi)(s(\gamma)c(\phi) - c(\gamma)s(\phi)s(\psi)$$
(43)

$$\mathcal{V}\dot{\gamma} = \frac{1}{m}\mathcal{N}c(\sigma) - \left[\frac{1}{m}\mathcal{S}s(\sigma)\right] - gc(\gamma) + \frac{\mathcal{V}^2}{r}c(\gamma) + 2\omega\mathcal{V}c(\phi)c(\psi) + \omega^2rc(\phi)(c(\gamma)c(\phi) + s(\gamma)s(\phi)s(\psi))$$
(44)  
$$\mathcal{V}\dot{\psi} = \frac{1}{m}\frac{\mathcal{N}s(\sigma)}{c(\gamma)} + \left[\frac{1}{m}\frac{\mathcal{S}c(\sigma)}{c(\gamma)}\right] - \frac{\mathcal{V}^2}{r}c(\gamma)c(\psi)t(\phi) + 2\omega\mathcal{V}(t(\gamma)c(\psi)s(\psi) - s(\phi)) - \frac{\omega^2r}{c(\gamma)}s(\phi)c(\phi)c(\psi)$$
(45)

$$\mathcal{V}\dot{\psi} = \frac{1}{m} \frac{\mathcal{N}s(\sigma)}{c(\gamma)} + \frac{1}{m} \frac{\mathcal{S}c(\sigma)}{c(\gamma)} - \frac{\mathcal{V}^2}{r} c(\gamma)c(\psi)t(\phi) + 2\omega\mathcal{V}(t(\gamma)c(\psi)s(\psi) - s(\phi)) - \frac{\omega^2 r}{c(\gamma)} s(\phi)c(\phi)c(\psi)$$
(45)